
SPARSE GAUSSIAN ELIMINATION

(introduction)

• Gaussian elimination - dense case

• Variants

• Main computational kernels

• Gaussian elimination in sparse case: a preview

• Graph model of elimination

Solving sparse systems today

6-2 – Gauss

Background. Three types of methods:

ä Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..

ä Iterative methods: compute a sequence of iterates which converge to the
solution - preconditioned Krylov methods..

ä Special purpose methods: Multigrid, Fast-Poisson solvers, ...

Remark: The first 2 classes of methods have always been in competition.

ä 40 years ago solving a system with n = 10, 000 was a challenge [Now
you can solve this in a fraction of a second on a laptop]

6-3 – Gauss

Quotation from R. Varga’s book on iterative methods [1962]

“As an example of the magnitude of problems that have
been successfully solved by cyclic iterative methods, the
Bettis Atomic Power Laboratory of the Westinghouse Electric
Corporation had in daily use in 1960 a 2-dimensional program
which would treat as a special case Laplacean-type matrix
equations of order 20,000.”

He adds in footnote: (paraphrase) the program was written for the Philco-
2000 computer which had 32,000 words of core storage (32Kwords!). ”Even
more staggering”: Bettis had a 3-D code which could treat coupled matrix
equations of order 108,000.

6-4 – Gauss

ä Sparse direct methods made huge gains in efficiency. They are very
competitive for 2-D problems.

ä 3-D problems lead to more challenging systems [inherent to the underly-
ing graph]

Difficulty:

• No robust ‘black-box’ iterative solvers.

At issue Robustness in conflict with efficiency.

ä Iterative methods are starting to use some of the tools of direct solvers to
gain ‘robustness’

6-5 – Gauss

Gaussian Elimination. Variants

Recall: Gaussian Elimination has 3 nested loops.

ä The three loop indices are denoted by k, i, j

ä We can order each of the loops differently.

ä A total of 6 different algorithms [more if we add blocking]: kij, kji, ijk, ikj,
jki, jik.

ä IMPORTANT: these algorithms are equivalent. Same operations are done
in a different order

ä Therefore same operation counts

-1 Find the analogous algorithms for Matrix-matrix multiplication

6-6 – Gauss

For k = 1 : n− 1 Do:
For i = k + 1 : n Do:
aik := aik/akk

For j := k + 1 : n Do
aij := aij − aik ∗ akj

End
End

End

KIJ

ä This is the KIJ variant of GE [hint: read the loop indices]

ä Also known as the “Outer product” form

ä Main drawback: rank-one update matrix at each step.

ä Can also have a KJI version [flip loops i and j]

6-7 – Gauss

For k = 1 : n− 1 Do:
For i := k + 1 : n Do
aik := aik/akk

EndDo
For j = k + 1 : n Do:

For i := k + 1 : n Do
aij := aij − aik ∗ akj

End
End

End

KJI

ä Can we swap loops k and j [‘delay the k-loop’]

ä Consider first the KIJ (row) version [flip loops k and i]

6-8 – Gauss

Gaussian Elimination. IKJ variant

For i = 2, . . . , n Do:
For k = 1, . . . , i− 1 Do:
aik := aik/akk

For j = k + 1, . . . , n Do:
aij := aij − aik ∗ akj

EndDo
EndDo

EndDo

IKJ

ä Also known as the ‘up-looking LU’

ä Row-oriented ‘delayed update’ algorithm

ä Can also have a column version [very common]

6-9 – Gauss

Gaussian Elimination. JKI or ‘Left-looking LU’

for j=1:n
for k=1:j-1

A(k+1:n,j) = A(k+1:n,j) - ...
A(k,j)*A(k+1:n,k);

end
// i loop:
A(j+1:n,j) = A(j+1:n,j) / A(j,j);

end

JKI

6-10 – Gauss

Other variants

IJK variant (dot product) Crout

ä Also: corresponding variants of Cholesky – We will only look at the
adaptation of the JKI variant of Cholesky..

6-11 – Gauss

Column Cholesky (compare with JKI – Gauss)

for j=1:n
for k=1:j-1

A(j:n,j)=A(j:n,j)-A(j:n,k)*A(j,k);
end
A(j,j) = sqrt(A(j,j));
A(j+1:n,j) = A(j+1:n,j)/A(j,j);

end

L

L
1

T

1

2
L

A

ä Column j of A [L-part] becomes column j of L.

6-12 – Gauss

ä We will often consider Sparse Cholesky because: 1) the SPD case is
important; 2) certain aspects are simpler than Gauss; 3) Generalizations are
easy..

ä Sparse Column Cholesky: same as above algorithm but implemented in
sparse mode

Number of operations. The total number of multiplications required to

compute the Cholesky factor L of a matrix A is given by
n−1∑
k=1

(η2
k − 1)

where ηk is the number of nonzero entries in the k-th column of L

6-13 – Gauss

Proof:

ä Consider only the KIJ version of Cholesky which is equivalent.

ä Rank-1 update at each step is A(k) = A(k−1)− vkvTk , where [using matlab
notation]

vk = [zeros(1, k), A(k−1)(k, k + 1 : n)]T

ä Only lower part is done - so cost is (ηk − 1)ηk.

ä Must add ηk − 1 scaling operations (mult. by inverse). Total: η2
k − 1

ä OK – but ηk’s not known in advance. Dense case ηk = n− k + 1

ä Storage:
∑n

k=1 ηk

6-14 – Gauss

Sparse solvers

ä Need to develop sparse versions: sparse operations

ä Major new consideration: Fill-in.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1934

ä These variants will lead to different computation kernels

6-15 – Gauss

Gaussian Elimination. Graph model

ä What happens to the graph when a node is eliminated?

Eliminating a node x in Gaussian elimination amounts to
1. Deleting node x and its adjacent edges from the graph
2. Adding edges between any two nodes that were adjacent to x.

ä Notation: A(k) = matrix at k-th step of elimination

Another viewpoint: At step k of
Gaussian Elimination, a fill-in is
introduced in position (i, j) iff

a
(k−1)
ik 6= 0 & a

(k−1)
kj 6= 0

i

k

j

6-16 – Gauss

A seminal paper:

S. Parter, “The use of linear graphs in Gauss elimination”, SIAM review, vol.
3, (1961), pp. 119-130.

ä Gave a major impetus to the use of the graph theory approach to sparse
matrix techniques.

ä Foundation for some of the major ideas (e.g. elimination trees) to come
even much later.

6-17 – Gauss

Example: Gaussian elimination steps for following graph

6 5

321

4



? ? ?

? ? ? ?

? ? ?

? ?

? ? ?

? ? ?


Eliminate 1:

6 5

32

4


?

? ?

? ?

? ?

• ? ?


6-18 – Gauss

Eliminate 2 and then 3:

3

6

4

5


?

• ?

? ?

• • ? ?


6

4

5

?• ?

• ? ?


ä Two more steps [omitted - they involve no fill-in]

Filled graph = final graph including

initial graph and all fill edges. Notation
GF = (V,EF). Note: |EF | measures
the memory required for GE to solve the
problem. 6 5

321

4

6-19 – Gauss

Gaussian Elimination. The fill path theorem

ä A Fill-path is a path between two vertices i and j in the graph of A such
that all vertices in the path, except the end points i and j, are numbered less
than i and j.

-2 What are all the fill-paths for the two examples below

6-20 – Gauss

THEOREM [Rose-Tarjan] There is a fill-in in entry (i, j) at the com-
pletion of the Gaussian elimination process if and only if, there exists a
fill-path between i and j.

ä Example of application: Separating a graph ≡ finding 3 sets of vertices:
V1, V2, S such that V = V1∪V2∪S and V1 and V2 have no couplings. Labeling
nodes of S last prevents fill-ins between nodes of V1 and V2.

-3 What are all the fill-edges for the previous examples (star graphs)

-4 Fill-edges for: 1

23 4

6 5
6-21 – Gauss

