REORDERINGS FOR FILL-REDUCTION

» Permutations and reorderings - graph interpretations

» Band-reduction orderings: Cuthill-Mc Kee, Reverse Cuthill Mc Kee
* Profile/envelope methods. Profile reduction.

» Multicoloring and independent sets [for iterative methods]

» Minimal degree ordering

» Nested Dissection



Reorderings and graphs

» Letnw = {i1,---,1,} @ permutation

> Ary = {ana)}, ..., = Matrix A with its i-th row replaced by row
number 7 (7).

» A, . =matrix A with its j-th column replaced by column = (5).

» Define P, =1I,, ="“Permutation matrix”— Then:




Consider now: A'= Ar . = PAP]

» Element in position (z, ) in matrix A’ is exactly element in position (= (z), w(7))
N A. (aj; = ar(i)m(j)

(¢,7) € Ea# <= (7(¢),7(j)) € Ea

i = | ‘New labels’

» General Picture: < > '01d labels’




Example:

1| Fill-in?
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* ¥ ¥ X ¥ X% * X x

A 9 x 9 ’arrow’ matrix and its adjacency graph.
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» Graph and matrix after swapping nodes 1 and 9:

© _
© 9) W
(8
@ i b S %k b S

2| Fill-in?
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* % ¥ X % X% * X x

Text: sec. 3.3 — orderings




The Cuthill-McKee and its reverse orderings

» A class of reordering techniques which proceed by levels in the graph.
» Related to Breadth First Search (BFS) traversal in graph theory.

» |dea of BFS is to visit the nodes by ‘levels’. Level 0 = level of starting
node.

» Start with a node, visit its neighbors, then the (unmarked) neighbors of its
neighbors, etc...




Example: h Queue
A A*B,C
® ® O, J B A B*C,D,|I
C/A B C*D, I E
©—— DA BC,D"ILE,G
| A,B,C,D,I"E G, J K
® ®—e EABC,D,LE*G,J, K FH
/ G ..
EABC,D,LEG,J K, F H*
A,B, CI|D I, E |G, J, K, FH
o ~— A ™
» Final traversal order: T O o o
> > > >
() )] () ()
- - - -




» Levels represent distances from the root
» Algorithm can be implemented by crossing levels 1,2, ...

» More common: Queue implementation

Algorithm BF S(G, v) — Queue implementation

e Initialize: Queue := {v}; Mark v; ptr = 1;
» While ptr < length(Queue) do

— head = Queue(ptr);

— ForEach Unmarked w € Adj(head):

* Mark w:
+ Add w to Queue: Queue = {Queue, w};

- ptr + +;




function [p] = bfs(A,1nit )
%% BFS traversal. queue 1mplementation

————————————————————— enqueue first node
p=[init];

n = size(A,1);

mask = zeros(n,1l);

mask (init) = 1;

S main loop

for h=1:n

S scan nodes 1in adj(p(h))
[ii, 33, rr] = find(A(:,p(h)));

1f (mask (v)==0)
p = [p, V] ;
mask (v) = 1;
end
end
end
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A few properties of Breadth-First-Search

» |If G is a connected undirected graph then each vertex will be visited once;
each edge will be inspected at least once

» Therefore, for a connected undirected graph,

The cost of BFS is O(|V| + |E|)

» Distance = level number; » For each node v we have:
min _dist(s,v) = level number(v) = depthr(v)

» Several reordering algorithms are based on variants of Breadth-First-
Search




Cuthill McKee ordering

Same as BFS except: Adj(head) always sorted by increasing degree

Example:
A C(3) B(4)
A, C B, F(2)
A, C,B F, D(3), E(4)
A CB,F D, E
A CB,FD E, G(2)
A,C,B,FED E |G
A C B, FDE,G

Rule: when adding nodes to the queue list them in 1 deg.
1 ——————————— | €X1: S€C. 3.3 — Orderings




Reverse Cuthill McKee ordering

» The Cuthill - Mc Kee ordering has a tendency to create small arrow
matrices (going the wrong way):
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Envelope/Profile methods

Many terms used for the same methods: Profile, Envelope, Skyline, ...
» (Generalizes band methods
» (Consider only the symmetric (in fact SPD) case

» Define bandwith of row z. (“i-th bandwidth of A):

Bi(A) = max;<i.q,+0 |t — J




Definition: Envelope of A is the set of all pairs (z,7) suchthat0 < :—j <
B:(A). The quantity |[Env(A)| is called profile of A.

Main result |The envelope is preserved by GE (no-pivoting)

Theorem: Let A = LLT the Cholesky factorization of A. Then

Env(A) = Env(L + L)

» An envelope / profile/ Skyline method is a method which treats any entry
a;;, With (¢,5) € Enwv(A) as nonzero.




Matlab test: do the following

1. Generate A = Lap2D (64, 64)

2. Compute R = chol (2)

3. show nnz (R)

4. Compute RCM permutation (sym-
rcm)

5. Compute B = A(p, p)
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6. spy (B)

/. compute R1 = chol (B)
8. Show nnz (R)

9. spy (R1)

Text: sec. 3.3 — orderings




Orderings for parallelism: Multicoloring

» General technique that can be exploited in many different ways to intro-
duce parallelism — generally of order N.

» (Constitutes one of the most successful techniques for introducing vector
computations for iterative methods..

» Want: assign colors so that no two adjacent nodes have the same color.

Simple example: | Red-Black ordering.
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Corresponding matrix

» QObserve: L-U solves with lower and upper parts of A will require only
diagonal scalings + matrix-vector products with matrices of size N/2.
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How to generalize Red-Black ordering?

Answer: | Multicoloring |& independent setsl

A greedy multicoloring technique:

e Initially assign color number zero (uncolored) to every node.
« Choose an order in which to traverse the nodes.

» Scan all nodes in the chosen order and at every node i do

Color(i) = min{k # 0|k # Color(j),V j € Adj (i)}

Adj(i) = set of nearest neighbors of i = {k | a;;, # 0}.
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Independent Sets

An independent set (IS) is a set of nodes that are not coupled by an
equation. The set is maximal if all other nodes in the graph are coupled to

a node of IS. If the unknowns of the IS are labeled first, then the matrix will
have the form:

B F
E C

in which B is a diagonal matrix, and E, F, and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every node 2 do:
if 2 is not colored color it Red and color all its neighbors Black. Independent
set: set of red nodes. Complexity: O(|E| + |V]).




~|
® ~

~l @

~ @




Show that the size of the independent set I is such that

[ I]>
1+ dj

where d; Is the maximum degree of each vertex in I (not counting self cycle).

#4

According to the above inequality what is a good (heuristic) order in

which to traverse the vertices in the greedy algorithm?

#15

Are there situations when the greedy alorithm for independent sets yield

the same sets as the multicoloring algorithm?
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Orderings used in direct solution methods

» Two broad types of orderings used:

« Minimal degree ordering + many variations

» Nested dissection ordering + many variations
» Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node v of smallest
degree. After eliminating node v, update degrees and repeat.




Minimal Degree Ordering

At any step ¢ of Gaussian elimination define for any candidate pivot row j

Cost(j) = (nzc(j) — 1)(nz-(3) — 1)

where nz.(j) = number of nonzero elements in column 5 of ‘active’ matrix,
nz,.(j) = number of nonzero elements in row j of ‘active’ matrix.

» Heuristic: fill-in at step j is < cost(j)

» Strategy: |select pivot with minimal cost.

» Local, greedy algorithm

» (Good results in practice.




Many improvements made over the years

e Alan George and Joseph W-H Liu, THE EVOLUTION OF THE MINIMUM DE-

GREE ORDERING ALGORITHM, SIAM Review, vol 31 (1989), pp. 1-19.

Min. Deg. Algorithm Storage| Order.

(words) time
Final min. degree 1,181 K| 43.90
Above w/o multiple elimn. 1,375 K| 57.38
Above w/o elimn. absorption 1,375 K| 56.00
Above w/o incompl. deg. update | 1,375 K| 83.26
Above w/o indistiguishible nodes | 1,308 K| 183.26
Above w/o mass-elimination 1,308 K|12289.44

» Results for a 180 x 180 9-point mesh problem
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» Since this article, many important developments took place.

» In particular the idea of “Approximate Min. Degree” and and “Approximate
Min. Fill”, see

e E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATEGIES FOR BOTTOM-
UP SPARSE MATRIX ORDERING, SIMAX, vol. 19 (1998), pp. 682-695.

e Patrick R. Amestoy, Timothy A. Davis, and lain S. Duff. AN APPROXIMATE
MINIMUM DEGREE ORDERING ALGORITHM. SIAM Journal on Matrix Analysis
and Applications, 17 (1996), pp. 886-905.




Practical Minimal degree algorithms
First Idea: | Use quotient graphs

* Avoids elimination graphs which are not economical

* Elimination creates cliques
* Represent each clique by a node termed an element (recall FEM methods)
* No need to create fill-edges and elimination graph

* Still expensive: updating the degrees




Second idea: | Multiple Minimum degree

* Many nodes will have the same degree. Idea: eliminate many of them
simultaneously —

* Specifically eliminate independent sets of nodes with same degree.

Third idea: |Approximate Minimum degree

* Degree updates are expensive —

* Goal: To save time.

* Approach: only compute an approximation (upper bound) to degrees.

* Details are complex and can be found in Tim Davis’ book

#06

7-30

Explore symamd and amd in matlab
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Nested Dissection Reordering (Alan George)

» Computer science ‘Divide-and-Conquer’ strategy.
» Best illustration: PDE finite difference grid.

» Easily described by using recursivity and by exploiting ‘separators’: ‘sep-
arate’ the graph in three parts, two of which have no coupling between them.
The 3rd set (‘the separator’) has couplings with vertices from both of the first
2 sets.

» Key idea: dissect the graph; take the subgraphs and dissect them recur-
sively.

» Nodes of separators always labeled last after those of the parents




Nested dissection ordering: illustration

———————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

7777777777777777777777777777777777777777777777777777777777

» For regular n x n meshes, can show: fill-in is of order n?logn and
computational cost of factorization is O(n?)

#7| How does this compare with a standard band solver?




Nested dissection for a small mesh

First dissection

““““

Original Grid

______



Third Dissection

Second Dissection
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Nested dissection: cost for a regular mesh

» In 2-D consider an n x n problem, N = n?

» In 3-D consider an n X n x n problem, N = n?

2-D 3-D
space (fill) O(Nlog N) | O(N*/3)
time (flops) O(N?3/?) O(N?)

» Significant difference in complexity between 2-D and 3-D

7-35 — order2




Nested dissection and separators

» Nested dissection methods depend on finding a good graph separator:

V = T UUT, U S such that the removal of S leaves Ty and T,
disconnected.

» Want: S small and T; and T; of about the same size.
»  Simplest version of the graph partitioning problem.

A theoretical result: It G is a planar graph with IV vertices, then there is a
separator S of size < v N such that |T3| < 2N/3 and |Tz| < 2N/3.

In other words “Planar graphs have O(+/N) separators”

» Many techniques for finding separators: Speciral, iterative swapping (K-
L), multilevel (Metis), BFS, ...




