
REORDERINGS FOR FILL-REDUCTION

• Permutations and reorderings - graph interpretations

• Band-reduction orderings: Cuthill-Mc Kee, Reverse Cuthill Mc Kee

• Profile/envelope methods. Profile reduction.

• Multicoloring and independent sets [for iterative methods]

• Minimal degree ordering

• Nested Dissection

Reorderings and graphs

ä Let π = {i1, · · · , in} a permutation

ä Aπ,∗ =
{
aπ(i),j

}
i,j=1,...,n

= matrix A with its i-th row replaced by row
number π(i).

ä A∗,π = matrix A with its j-th column replaced by column π(j).

ä Define Pπ = Iπ,∗ = “Permutation matrix” – Then:

(1) Each row (column) of Pπ consists of zeros and exactly one “1”
(2) Aπ,∗ = PπA

(3) PπP T
π = I

(4) A∗,π = AP T
π

7-2 Text: sec. 3.3 – orderings

Consider now: A′ = Aπ,π = PπAP
T
π

ä Element in position (i, j) in matrixA′ is exactly element in position (π(i), π(j))

in A. (a′ij = aπ(i),π(j))

(i, j) ∈ EA′ ⇐⇒ (π(i), π(j)) ∈ EA

ä General Picture:

i j

π(i)
π (j) ’Old labels’

‘New labels’

7-3 Text: sec. 3.3 – orderings

Example: A 9 × 9 ’arrow’ matrix and its adjacency graph.

5

6

7

8

4 2

3

91




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗




-1 Fill-in?

7-4 Text: sec. 3.3 – orderings

ä Graph and matrix after swapping nodes 1 and 9:

9 1

3

5

6

7

8

4 2




∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




-2 Fill-in?

7-5 Text: sec. 3.3 – orderings

The Cuthill-McKee and its reverse orderings

ä A class of reordering techniques which proceed by levels in the graph.

ä Related to Breadth First Search (BFS) traversal in graph theory.

ä Idea of BFS is to visit the nodes by ‘levels’. Level 0 = level of starting
node.

ä Start with a node, visit its neighbors, then the (unmarked) neighbors of its
neighbors, etc...

7-6 Text: sec. 3.3 – orderings

Example:

BA

F G

J

D

E

K

H

C

I

h Queue
A A* B, C
B A, B* C, D, I
C A, B, C* D, I, E
D A, B, C , D* I, E, G
I A, B, C , D , I* E, G, J, K
E A, B, C , D , I, E* G, J, K, F, H
G ...
E A, B, C , D , I, E, G, J, K, F, H*

ä Final traversal order:

A, B, C, D, I, E, G, J, K, F, H

Le
ve

l0

Le
ve

l1

Le
ve

l2

Le
ve

l3

7-7 Text: sec. 3.3 – orderings

ä Levels represent distances from the root

ä Algorithm can be implemented by crossing levels 1,2, ...

ä More common: Queue implementation

Algorithm BFS(G, v) – Queue implementation

• Initialize: Queue := {v}; Mark v; ptr = 1;

• While ptr < length(Queue) do

– head = Queue(ptr);
– ForEach Unmarked w ∈ Adj(head):

* Mark w;

* Add w to Queue: Queue = {Queue, w};
– ptr + +;

7-8 Text: sec. 3.3 – orderings

function [p] = bfs(A,init)
%% BFS traversal. queue implementation
%%-------------------- enqueue first node
p=[init];
n = size(A,1);
mask = zeros(n,1);
mask(init) = 1;

%%-------------------- main loop
for h=1:n
%%-------------------- scan nodes in adj(p(h))

[ii, jj, rr] = find(A(:,p(h)));
for v=ii’

if (mask(v)==0)
p = [p, v] ;
mask(v) = 1;

end
end

end

7-9 Text: sec. 3.3 – orderings

A few properties of Breadth-First-Search

ä IfG is a connected undirected graph then each vertex will be visited once;
each edge will be inspected at least once

ä Therefore, for a connected undirected graph,

The cost of BFS is O(|V |+ |E|)

ä Distance = level number; ä For each node v we have:

min dist(s, v) = level number(v) = depthT (v)

ä Several reordering algorithms are based on variants of Breadth-First-
Search

7-10 Text: sec. 3.3 – orderings

Cuthill McKee ordering

Same as BFS except: Adj(head) always sorted by increasing degree

Example:

A

B

C

D

E

F

G

A C(3) B(4)
A, C B, F(2)
A, C, B F, D(3), E(4)
A, C, B, F D, E
A, C, B, F, D E, G(2)
A, C, B, F, D, E G
A, C, B, F, D, E, G

Rule: when adding nodes to the queue list them in ↑ deg.
7-11 Text: sec. 3.3 – orderings

Reverse Cuthill McKee ordering

ä The Cuthill - Mc Kee ordering has a tendency to create small arrow
matrices (going the wrong way):

Original matrix

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

CM ordering

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

7-12 Text: sec. 3.3 – orderings

ä Idea: Take the reverse ordering

ä Reverse Cuthill M Kee ordering (RCM).

RCM ordering

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

7-13 Text: sec. 3.3 – orderings

Envelope/Profile methods

Many terms used for the same methods: Profile, Envelope, Skyline, ...

ä Generalizes band methods

ä Consider only the symmetric (in fact SPD) case

ä Define bandwith of row i. (“i-th bandwidth of A):

βi(A) = maxj≤i;aij 6=0 |i− j|

7-14 Text: sec. 3.3 – orderings

Definition: Envelope ofA is the set of all pairs (i, j) such that 0 < i−j ≤
βi(A). The quantity |Env(A)| is called profile of A.

Main result The envelope is preserved by GE (no-pivoting)

Theorem: Let A = LLT the Cholesky factorization of A. Then

Env(A) = Env(L+ LT)

ä An envelope / profile/ Skyline method is a method which treats any entry
aij, with (i, j) ∈ Env(A) as nonzero.

7-15 Text: sec. 3.3 – orderings

Matlab test: do the following

1. Generate A = Lap2D(64,64)

2. Compute R = chol(A)

3. show nnz(R)

4. Compute RCM permutation (sym-
rcm)
5. Compute B = A(p,p)

6. spy(B)
7. compute R1 = chol(B)

8. Show nnz(R)

9. spy(R1)

7-16 Text: sec. 3.3 – orderings

Orderings for parallelism: Multicoloring

ä General technique that can be exploited in many different ways to intro-
duce parallelism – generally of order N .

ä Constitutes one of the most successful techniques for introducing vector
computations for iterative methods..

ä Want: assign colors so that no two adjacent nodes have the same color.

Simple example: Red-Black ordering.

�
��1 �
��2 �
��3

�
��4 �
��5

�
��6 �
��7 �
��8

�
��9 �
��10

�
��11 �
��12

�
��13 �
��14 �
��15

�
��16 �
��17

�
��18 �
��19 �
��20

7-18 Text: sec. 3.3 – coloring

Corresponding matrix

ä Observe: L-U solves with lower and upper parts of A will require only
diagonal scalings + matrix-vector products with matrices of size N/2.

7-19 Text: sec. 3.3 – coloring

How to generalize Red-Black ordering?

Answer: Multicoloring & independent sets

A greedy multicoloring technique:

• Initially assign color number zero (uncolored) to every node.

• Choose an order in which to traverse the nodes.

• Scan all nodes in the chosen order and at every node i do

Color(i) = min{k 6= 0|k 6= Color(j), ∀ j ∈ Adj (i)}

Adj(i) = set of nearest neighbors of i = {k | aik 6= 0}.

7-20 Text: sec. 3.3 – coloring

|

|

|

|

|

|

c
c
c
c
c
c
c
c
c
c
c
c
c
c ,

,
,
,
,
,
,
,
,
,
,
,

@
@
@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(((((
(((((

(((((
(((((

((((

4

2
0

1

0

7-21 Text: sec. 3.3 – coloring

Independent Sets

An independent set (IS) is a set of nodes that are not coupled by an
equation. The set is maximal if all other nodes in the graph are coupled to
a node of IS. If the unknowns of the IS are labeled first, then the matrix will
have the form: [

B F

E C

]

in which B is a diagonal matrix, and E, F , and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every node i do:
if i is not colored color it Red and color all its neighbors Black. Independent
set: set of red nodes. Complexity: O(|E|+ |V |).

7-22 Text: sec. 3.3 – coloring

|

|

|

|

|

�
��I

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c ,

,
,
,
,
,
,
,
,
,
,
,

@
@
@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(((((
(((((

(((((
(((((

((((

I

I
I

I

I

7-23 Text: sec. 3.3 – coloring

-3 Show that the size of the independent set I is such that

|I|≥ n

1 + dI

where dI is the maximum degree of each vertex in I (not counting self cycle).

-4 According to the above inequality what is a good (heuristic) order in
which to traverse the vertices in the greedy algorithm?

-5 Are there situations when the greedy alorithm for independent sets yield
the same sets as the multicoloring algorithm?

7-24 Text: sec. 3.3 – coloring

Orderings used in direct solution methods

ä Two broad types of orderings used:

• Minimal degree ordering + many variations

• Nested dissection ordering + many variations

ä Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node v of smallest
degree. After eliminating node v, update degrees and repeat.

7-25 – order2

Minimal Degree Ordering

At any step i of Gaussian elimination define for any candidate pivot row j

Cost(j) = (nzc(j)− 1)(nzr(j)− 1)

where nzc(j) = number of nonzero elements in column j of ‘active’ matrix,
nzr(j) = number of nonzero elements in row j of ‘active’ matrix.

ä Heuristic: fill-in at step j is ≤ cost(j)

ä Strategy: select pivot with minimal cost.

ä Local, greedy algorithm

ä Good results in practice.

7-26 – order2

Many improvements made over the years

• Alan George and Joseph W-H Liu, THE EVOLUTION OF THE MINIMUM DE-
GREE ORDERING ALGORITHM, SIAM Review, vol 31 (1989), pp. 1-19.

Min. Deg. Algorithm Storage Order.
(words) time

Final min. degree 1,181 K 43.90
Above w/o multiple elimn. 1,375 K 57.38
Above w/o elimn. absorption 1,375 K 56.00
Above w/o incompl. deg. update 1,375 K 83.26
Above w/o indistiguishible nodes 1,308 K 183.26
Above w/o mass-elimination 1,308 K 2289.44

ä Results for a 180× 180 9-point mesh problem
7-27 – order2

ä Since this article, many important developments took place.

ä In particular the idea of “Approximate Min. Degree” and and “Approximate
Min. Fill”, see

• E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATEGIES FOR BOTTOM-
UP SPARSE MATRIX ORDERING, SIMAX, vol. 19 (1998), pp. 682-695.

• Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. AN APPROXIMATE

MINIMUM DEGREE ORDERING ALGORITHM. SIAM Journal on Matrix Analysis
and Applications, 17 (1996), pp. 886-905.

7-28 – order2

Practical Minimal degree algorithms

First Idea: Use quotient graphs

* Avoids elimination graphs which are not economical

* Elimination creates cliques

* Represent each clique by a node termed an element (recall FEM methods)

* No need to create fill-edges and elimination graph

* Still expensive: updating the degrees

7-29 – order2

Second idea: Multiple Minimum degree

* Many nodes will have the same degree. Idea: eliminate many of them
simultaneously –

* Specifically eliminate independent sets of nodes with same degree.

Third idea: Approximate Minimum degree

* Degree updates are expensive –

* Goal: To save time.

* Approach: only compute an approximation (upper bound) to degrees.

* Details are complex and can be found in Tim Davis’ book

-6 Explore symamd and amd in matlab

7-30 – order2

Nested Dissection Reordering (Alan George)

ä Computer science ‘Divide-and-Conquer’ strategy.

ä Best illustration: PDE finite difference grid.

ä Easily described by using recursivity and by exploiting ‘separators’: ‘sep-
arate’ the graph in three parts, two of which have no coupling between them.
The 3rd set (’the separator’) has couplings with vertices from both of the first
2 sets.

ä Key idea: dissect the graph; take the subgraphs and dissect them recur-
sively.

ä Nodes of separators always labeled last after those of the parents

7-31 – order2

Nested dissection ordering: illustration

1

2

4
3

6

5

7

ä For regular n × n meshes, can show: fill-in is of order n2 logn and
computational cost of factorization is O(n3)

-7 How does this compare with a standard band solver?

7-32 – order2

Nested dissection for a small mesh

Original Grid
First dissection

Second Dissection Third Dissection

7-34 – order2

Nested dissection: cost for a regular mesh

ä In 2-D consider an n× n problem, N = n2

ä In 3-D consider an n× n× n problem, N = n3

2-D 3-D
space (fill) O(N logN) O(N4/3)

time (flops) O(N3/2) O(N2)

ä Significant difference in complexity between 2-D and 3-D

7-35 – order2

Nested dissection and separators

ä Nested dissection methods depend on finding a good graph separator:
V = T1 ∪ UT2 ∪ S such that the removal of S leaves T1 and T2

disconnected.

ä Want: S small and T1 and T2 of about the same size.

ä Simplest version of the graph partitioning problem.

A theoretical result: If G is a planar graph with N vertices, then there is a
separator S of size ≤

√
N such that |T1| ≤ 2N/3 and |T2| ≤ 2N/3.

In other words “Planar graphs have O(
√
N) separators”

ä Many techniques for finding separators: Spectral, iterative swapping (K-
L), multilevel (Metis), BFS, ...
7-36 – order2

