- Building blocks for sparse direct solvers
- SPD case. Sparse Column Cholesky/
- Elimination Trees - Symbolic factorization

Direct Sparse Matrix Methods

Problem addressed: Linear systems $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
> We will consider mostly Cholesky -

- We will consider some implementation details and tricks used to develop efficient solvers

Basic principles:

- Separate computation of structure from rest [symbolic factorization]
- Do as much work as possible statically
- Take advantage of clique formation (supernodes, mass-elimination).

Sparse Column Cholesky

For $j=1, \ldots, n$ Do:

$$
\begin{aligned}
& l(j: n, j)=a(j: n, j) \\
& \text { For } k=1, \ldots, j-1 \text { Do: } \\
& \quad / / \operatorname{cmod}(\mathrm{k}, \mathrm{j}) \text { : } \\
& \quad l_{j: n, j}:=l_{j: n, j}-l_{j, k} * l_{j: n, k}
\end{aligned}
$$

EndDo
// cdiv (j) [Scale]
$l_{j, j}=\sqrt{l_{j, j}}$
$l_{j+1: n, j}:=l_{j+1: n, j} / l_{j j}$
EndDo

The four essential stages of a solve

1. Reordering: $A \quad \longrightarrow \quad A:=P A P^{T}$
> Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]
2. Symbolic Factorization: Build static data structure.
> Exploits 'elimination tree', uses graph only.
> Also: 'supernodes'
3. Numerical Factorization: Actual factorization $A=L L^{T}$
$>$ Pattern of L known. Use static data structure. Exploit supernodes
4. Triangular solves: Solve $L y=b$ then $L^{T} x=y$

The notion of elimination tree

Elimination trees are useful in many different ways [theory, symbolic factorization, etc..]
$>$ For a matrix whose graph is a tree, parent of column $j<n$ is defined by

$$
\operatorname{Parent}(j)=i, \text { where } a_{i j} \neq 0 \text { and } i>j
$$

> For a general matrix matrix, consider $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$, and $\boldsymbol{G}^{F}=$ 'filled' graph $=$ graph of $L+L^{T}$. Then

$$
\operatorname{Parent}(j)=\min (i) \text { s.t. } a_{i j} \neq 0 \text { and } i>j
$$

$>$ Defines a tree rooted at column n (Elimintion tree).

Example: Original matrix and Graph

Filled matrix+graph

$$
\left[\begin{array}{llllllll}
1 & \star & & & \star & & & \star \\
\star & 2 & & & \square & \star & & \square \\
& & 3 & & \star & & & \star \\
& & & 4 & & \star & \star & \\
\star & \square & \star & & 5 & \square & & \star \\
& \star & & \star & \square & 6 & \square & \square \\
& & & \star & & \square & 7 & \star \\
\star & \square & \star & & \star & \square & \star & 8
\end{array}\right]
$$

Corresponding Elimination Tree

$>$ Parent $(\mathrm{i})=$ 'first nonzero entry in $L(i+1: n, i)$ '
$>\operatorname{Parent}(\mathrm{i})=\min \left\{j>i \mid j \in \operatorname{Adj}_{G^{F}}(i)\right\}$

Where does the elimination tree come from?

$>$ Answer in the form of an excercise.

Consider the elimination steps for the previous example. A directed edge means a row (column) modification. It shows the task dependencies. There are unnecessary dependencies. For example: $1 \rightarrow 5$ can be removed because it is subsumed by the path $1 \rightarrow 2 \rightarrow 5$.

To do: Remove all the redundant dependencies.. What is the result?

Facts about elimination trees

- Elimination Tree defines dependencies between columns.
> The root of a subtree cannot be used as pivot before any of its descendents is processed.
$>$ Elimination tree depends on ordering;
> Can be used to define 'parallel' tasks.
$>$ For parallelism: flat and wide trees \rightarrow good; thin and tall (e.g. of tridiagonal systems) \rightarrow Bad.
> For parallel executions, Nested Dissection gives better trees than Minimun Degree ordering.

Elim. tree depends on ordering (Not just the graph)

Example: 3×3 grid for 5 -point stencil [natural ordering]

Properties

> The elimination tree is a spanning tree of the filled graph [a tree containing all vertices] - obtained by removing edges.
$>$ If $l_{i k} \neq 0$ then i is an ancestor of k in the tree
0_{0} In the previous example: follow the creation of the fill-in $(6,8)$.

In particular: if $a_{i k} \neq 0, k<i$ then $i \rightsquigarrow k$
$>$ Consequence: no fill-in between branches of the same subtree

Elimination trees and the pattern of L

$>$ It is easy to determine the sparsity pattern of L because the pattern of a given column is "inherited" by the ancestors in the tree.

Theorem: For $i>j, l_{i j} \neq 0$ iff j is an ancestor of some $k \in$ $\operatorname{Adj}_{A}(i)$ in the elimination tree.

In other words:

$$
\begin{array}{l|l}
\hline l_{i j} \neq 0, i>j \text { ff } & \begin{array}{l}
\exists k \in \operatorname{Adj}_{A}(i) s . t . \\
j \rightsquigarrow k
\end{array} \\
\hline
\end{array}
$$

In theory: To construct the pattern of L, go up the tree and accumulate the patterns of the columns. Initially L has the same pattern as TRIL(A).

> However: Let us assume tree is not available ahead of time
> Solution: Parents can be obtained dynamically as the pattern is being built.
$>$ This is the basis of symbolic factorization.

Notation :
$>n \boldsymbol{z}(\boldsymbol{X})$ is the pattern of \boldsymbol{X} (matrix or column, or row). A set of pairs (i, j)
$>\operatorname{tril}(\boldsymbol{X})=$ Lower triangular part of pattern [matlab notation] $\{(i, j) \in$ $X \mid i>j\}$
> Idea: dynamically create the list of nodes needed to update $L_{:, j}$.

ALGORITHM : 1. Symbolic factorization

1. Set: $n z(L)=\operatorname{tril}(n z(A))$,
2. Set: $\operatorname{list}(j)=\emptyset, j=1, \cdots, n$
3. For $j=1: n$
4. for $k \in \operatorname{list}(j) d o$
5. $\quad n z\left(L_{:, j}\right):=n z\left(L_{:, j}\right) \cup n z\left(L_{:, k}\right)$
6. end
7. $p=\min \left\{i>j \mid L_{i, j} \neq 0\right\}$
8. $\quad \operatorname{list}(p):=\operatorname{list}(p) \cup\{j\}$
9. End

Example: Consider the earlier example:

Multifrontal methods

$>$ Start with the frontal method.
> Recall: Finite element matrix:

$$
\boldsymbol{A}=\sum \boldsymbol{A}^{[e]}
$$

$A^{[e]}=$ element matrix associated with element e.
> An old idea: Execute Gaussian elimination as the elements are being assembled
$>$ Dependency: variabes \leftrightarrow elements, creates an assembly tree.
$>$ Method is called the frontal method
> Very popular among finite element users: saves storage

The origin: Frontal method (circa 1970s)

$>$ Assemble $\boldsymbol{A}+$ B then eliminate \boldsymbol{x}_{1}
$>$ Elimination of x_{1} creates an update matrix

$A+B$

Elimin x 2

$>$ Matrix has 3 parts:

1) Fully assembled (no longer modified)
2) Frontal matrix: undergoes assembly + updates
3) Remainder: not accessed yet.

Assembly tree: - analogue to elimination tree

> Can proceed from several incoupled elements at the same time \rightarrow multifrontal technique [Duff \& Reid, 1983]

Assembly tree for Multifrontal Method

Multifrontal methods: extension to general matrices

> Elimination tree replaces assembly tree
> Proceed in post-order traversal of elimination tree in order not to violate task dependencies.
> When a node is eliminated an update matrix is created.
$>$ This matrix is passed to the parent which adds it to its frontal matrix.
> Requires a stack of pending update matrices
> Update matrices popped out as they are needed
> Often implemented with nested dissection-type ordering
> More complex than a left-looking algorithm

Eliminating nodes 1 and 2: What happens on matrix

1		\star		\star			$\leftarrow U_{1}(3,:) \leftarrow U_{2}(3,:)$	
	2	\star				\star		
*	\star	3		\square	\star	\square		
			$\begin{array}{lll}4 & \\ & \star \\ & 5 & \star \\ \star & \star & 6\end{array}$	\star	\star	*		
*		\square	\star	7	\star		$\leftarrow U_{1}(7,:)$	$\leftarrow U_{2}(9,:)$
		\star	\star	\star	8	\star		
	*	\square	\star		\star	9		

Supernodes

Columns inherit patterns of the columns from which they are updated \rightarrow Many columns with same sparsity pattern. Supernode = a set of contiguous columns in the Cholesky factor L that have the same sparsity pattern.
$>$ The set $\{j, j+1, \ldots, j+s\}$ is a supernode if

$$
N Z\left(L_{*, k}\right)=N Z\left(L_{*, k+1}\right) \bigcup\{k+1\} \quad j \leq k<j+s
$$

where $N Z\left(L_{*, k}\right)$ is nonzero set of column k of L.
> Other terms used: Mass elimination, indistinguishible nodes, active variables in front, subscript compression,...
$>$ Gain in performance due to savings in Gather-Scatter operations.

A few existing solvers (among many)

Code	Method	Scope	Developer
CHOLMOD	Left-Looking	SPD	T. Davis
MA67	Multifrontal	Symm	HSL
MA48	Right-Looking	UnSymm	HSL
SuperLU	Left-Looking	UnSymm	S. Li (LBL)
Pardiso	Left-Looking	Symm. Patt.	O. Schenk (Lugano)
MA41	Multifrontal	Symm Patt.	HSL
MUMPS	Multifrontal	Symm Patt.	Amestoy (Toulouse)
Pastix	Left+Right-Looking	Symm, symm. patt.	Labri (Bordeaux)
SuperLU_Dist	Right-Looking	UnSymm	S. Li (LBL)

