
SPARSE DIRECT METHODS

• Building blocks for sparse direct solvers

• SPD case. Sparse Column Cholesky/

• Elimination Trees - Symbolic factorization

Direct Sparse Matrix Methods

Problem addressed: Linear systems Ax = b

ä We will consider mostly Cholesky –

ä We will consider some implementation details and tricks used to develop
efficient solvers

Basic principles:

• Separate computation of structure from rest [symbolic factorization]

• Do as much work as possible statically

• Take advantage of clique formation (supernodes, mass-elimination).
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Sparse Column Cholesky

For j = 1, . . . , n Do:
l(j : n, j) = a(j : n, j)

For k = 1, . . . , j − 1 Do:
// cmod(k,j):
lj:n,j := lj:n,j − lj,k ∗ lj:n,k

EndDo
// cdiv (j) [Scale]
lj,j =

√
lj,j

lj+1:n,j := lj+1:n,j/ljj

EndDo
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The four essential stages of a solve

1. Reordering: A −→ A := PAP T

ä Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]

2. Symbolic Factorization: Build static data structure.

ä Exploits ’elimination tree’, uses graph only.

ä Also: ’supernodes’

3. Numerical Factorization: Actual factorization A = LLT

ä Pattern of L known. Use static data structure. Exploit supernodes

4. Triangular solves: Solve Ly = b then LTx = y
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ELIMINATION TREES

The notion of elimination tree

ä Elimination trees are useful in many different ways [theory, symbolic
factorization, etc..]

ä For a matrix whose graph is a tree, parent of column j < n is defined by

Parent(j) = i, where aij 6= 0 and i>j

ä For a general matrix matrix, consider A = LLT , and GF = ‘filled’ graph =
graph of L + LT . Then

Parent(j) = min(i) s.t. aij 6= 0 and i>j

ä Defines a tree rooted at column n (Elimintion tree).

8-6 Davis: Chap. 4 – Direct

Example: Original matrix and Graph
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Filled matrix+graph



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Corresponding Elimination Tree
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ä Parent(i) = ’first nonzero entry in L(i+1:n,i)’

ä Parent(i) = min {j > i | j ∈ AdjGF (i)}
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Where does the elimination tree come from?

ä Answer in the form of an excercise.

Consider the elimination steps for the pre-
vious example. A directed edge means a
row (column) modification. It shows the task
dependencies. There are unnecessary de-
pendencies. For example: 1 → 5 can be
removed because it is subsumed by the path
1→ 2→ 5.
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To do: Remove all the redundant dependencies.. What is the result?
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Facts about elimination trees

ä Elimination Tree defines dependencies between columns.

ä The root of a subtree cannot be used as pivot before any of its descen-
dents is processed.

ä Elimination tree depends on ordering;

ä Can be used to define ‘parallel’ tasks.

ä For parallelism: flat and wide trees→ good; thin and tall (e.g. of tridiago-
nal systems)→ Bad.

ä For parallel executions, Nested Dissection gives better trees than Minimun
Degree ordering.
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Elim. tree depends on ordering (Not just the graph)

Example: 3× 3 grid for 5-point stencil [natural ordering]
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ä Same example with nested dissection ordering
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Properties

ä The elimination tree is a spanning tree of the filled graph [a tree containing
all vertices] - obtained by removing edges.

ä If lik 6= 0 then i is an
ancestor of k in the tree
-1 In the previous example:
follow the creation of the fill-in
(6,8).

k

parent(k)

i 

parent  (k) 

parent  (k) 
3

2

In particular: if aik 6= 0, k < i then i  k

ä Consequence: no fill-in between branches of the same subtree
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Elimination trees and the pattern of L

ä It is easy to determine the sparsity pattern of L because the pattern of a
given column is “inherited” by the ancestors in the tree.

Theorem: For i > j, lij 6= 0

iff j is an ancestor of some k ∈
AdjA(i) in the elimination tree.
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In other
words:

lij 6= 0, i > j iff
∃k ∈ AdjA(i)s.t.

j  k

In theory: To construct the
pattern of L, go up the tree
and accumulate the patterns
of the columns. Initially
L has the same pattern as
TRIL(A).
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nz(L:5) := nz(L:5)

U
 U nz(L:3) 

nz(L:2)

ä However: Let us assume tree is not available ahead of time

ä Solution: Parents can be obtained dynamically as the pattern is being
built.

ä This is the basis of symbolic factorization.
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Notation :

ä nz(X) is the pattern of X (matrix or column, or row). A set of pairs (i, j)

ä tril(X) = Lower triangular part of pattern [matlab notation] {(i, j) ∈
X |i > j}

ä Idea: dynamically create the list of nodes needed to update L:,j.
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ALGORITHM : 1 Symbolic factorization

1. Set: nz(L) = tril(nz(A)),
2. Set: list(j) = ∅, j = 1, · · · , n
3. For j = 1 : n

4. for k ∈ list(j) do
5. nz(L:,j) := nz(L:,j) ∪ nz(L:,k)

6. end
7. p = min{i > j | Li,j 6= 0}
8. list(p) := list(p) ∪ {j}
9. End
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Example: Consider the earlier example:
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Multifrontal methods

ä Start with the frontal method.

ä Recall: Finite element matrix: A =
∑

A[e]

A[e] = element matrix associated with element e.

ä An old idea: Execute Gaussian elimination as the elements are being
assembled

ä Dependency: variabes↔ elements, creates an assembly tree.

ä Method is called the frontal method

ä Very popular among finite element users: saves storage
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The origin: Frontal method (circa 1970s)

ä Assemble A +

B then eliminate
x1

ä Elimination of
x1 creates an up-
date matrix
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ä Matrix has 3 parts:

1) Fully assembled (no longer modified)

2) Frontal matrix: undergoes assembly + updates

3) Remainder: not accessed yet.

Remainder

Frontal
Assembled
Fully U

O

O

FL

LU
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Assembly tree: - analogue to elimination tree
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ä Can proceed from several incoupled elements at the same time→ multi-
frontal technique [Duff & Reid, 1983]

8-25 – Direct2

Assembly tree
for Multifrontal
Method
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Multifrontal methods: extension to general matrices

ä Elimination tree replaces assembly tree

ä Proceed in post-order traversal of elimination tree in order not to violate
task dependencies.

ä When a node is eliminated an update matrix is created.

ä This matrix is passed to the parent which adds it to its frontal matrix.

ä Requires a stack of pending update matrices

ä Update matrices popped out as they are needed

ä Often implemented with nested dissection-type ordering

ä More complex than a left-looking algorithm
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Eliminating nodes 1 and 2: What happens on matrix



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


← U1(3, :)

← U1(7, :)

← U2(3, :)

← U2(9, :)
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Supernodes

Columns inherit patterns of the columns from which they are updated →
Many columns with same sparsity pattern. Supernode = a set of contiguous
columns in the Cholesky factor L that have the same sparsity pattern.

ä The set {j, j + 1, ..., j + s} is a supernode if

NZ(L∗,k) = NZ(L∗,k+1)
⋃{k + 1} j ≤ k<j + s

where NZ(L∗,k) is nonzero set of column k of L.

ä Other terms used: Mass elimination, indistinguishible nodes, active vari-
ables in front, subscript compression,...

ä Gain in performance due to savings in Gather-Scatter operations.
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A few existing solvers (among many)

Code Method Scope Developer
CHOLMOD Left-Looking SPD T. Davis
MA67 Multifrontal Symm HSL
MA48 Right-Looking UnSymm HSL
SuperLU Left-Looking UnSymm S. Li (LBL)
Pardiso Left-Looking Symm. Patt. O. Schenk (Lugano)
MA41 Multifrontal Symm Patt. HSL
MUMPS Multifrontal Symm Patt. Amestoy (Toulouse)
Pastix Left+Right-Looking Symm, symm. patt. Labri (Bordeaux)
SuperLU Dist Right-Looking UnSymm S. Li (LBL)
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