
SPARSE DIRECT METHODS

• Building blocks for sparse direct solvers

• SPD case. Sparse Column Cholesky/

• Elimination Trees - Symbolic factorization

Direct Sparse Matrix Methods

Problem addressed: Linear systems Ax = b

ä We will consider mostly Cholesky –

ä We will consider some implementation details and tricks used to develop
efficient solvers

Basic principles:

• Separate computation of structure from rest [symbolic factorization]

• Do as much work as possible statically

• Take advantage of clique formation (supernodes, mass-elimination).

8-2 Davis: Chap. 4 – Direct

Sparse Column Cholesky

For j = 1, . . . , n Do:
l(j : n, j) = a(j : n, j)

For k = 1, . . . , j − 1 Do:
// cmod(k,j):
lj:n,j := lj:n,j − lj,k ∗ lj:n,k

EndDo
// cdiv (j) [Scale]
lj,j =

√
lj,j

lj+1:n,j := lj+1:n,j/ljj

EndDo

L

L
1

T

1

2
L

A

8-3 Davis: Chap. 4 – Direct

The four essential stages of a solve

1. Reordering: A −→ A := PAP T

ä Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]

2. Symbolic Factorization: Build static data structure.

ä Exploits ’elimination tree’, uses graph only.

ä Also: ’supernodes’

3. Numerical Factorization: Actual factorization A = LLT

ä Pattern of L known. Use static data structure. Exploit supernodes

4. Triangular solves: Solve Ly = b then LTx = y

8-4 Davis: Chap. 4 – Direct

ELIMINATION TREES

The notion of elimination tree

ä Elimination trees are useful in many different ways [theory, symbolic
factorization, etc..]

ä For a matrix whose graph is a tree, parent of column j < n is defined by

Parent(j) = i, where aij 6= 0 and i>j

ä For a general matrix matrix, consider A = LLT , and GF = ‘filled’ graph =
graph of L + LT . Then

Parent(j) = min(i) s.t. aij 6= 0 and i>j

ä Defines a tree rooted at column n (Elimintion tree).

8-6 Davis: Chap. 4 – Direct

Example: Original matrix and Graph




1 ? ? ?

? 2 ?

3 ? ?

4 ? ?

? ? 5 ?

? ? 6

? 7 ?

? ? ? ? 8




1

2

6

4 7

8

5

3

8-7 Davis: Chap. 4 – Direct

Filled matrix+graph




1 ? ? ?

? 2 ?

3 ? ?

4 ? ?

? ? 5 ?

? ? 6

? 7 ?

? ? ? ? 8




1

2

6

4 7

8

5

3

8-8 Davis: Chap. 4 – Direct

Corresponding Elimination Tree

1

2

6

4 7

8

5

3

−→

8

7

6

45

3

1

2

ä Parent(i) = ’first nonzero entry in L(i+1:n,i)’

ä Parent(i) = min {j > i | j ∈ AdjGF (i)}
8-9 Davis: Chap. 4 – Direct

Where does the elimination tree come from?

ä Answer in the form of an excercise.

Consider the elimination steps for the pre-
vious example. A directed edge means a
row (column) modification. It shows the task
dependencies. There are unnecessary de-
pendencies. For example: 1 → 5 can be
removed because it is subsumed by the path
1→ 2→ 5.

1

2

6

4 7

8

5

3

1

1

2

2 3

3

1

4

6

5

1

4

7

5

6

To do: Remove all the redundant dependencies.. What is the result?

8-10 Davis: Chap. 4 – Direct

Facts about elimination trees

ä Elimination Tree defines dependencies between columns.

ä The root of a subtree cannot be used as pivot before any of its descen-
dents is processed.

ä Elimination tree depends on ordering;

ä Can be used to define ‘parallel’ tasks.

ä For parallelism: flat and wide trees→ good; thin and tall (e.g. of tridiago-
nal systems)→ Bad.

ä For parallel executions, Nested Dissection gives better trees than Minimun
Degree ordering.

8-11 Davis: Chap. 4 – Direct

Elim. tree depends on ordering (Not just the graph)

Example: 3× 3 grid for 5-point stencil [natural ordering]

����

����

����

����
����
����

����

����

����

����

����

����

����
����
����

����

����

����

31

7 98

2

5 64

+ +
+ + +

+ +
+ + +

+ + +
+ +

+ +
+ + +

+ +

+
+

+
+ +

+
+

+
+

+

+ +
+ + +

+ +
+ + +

+ + +
+ +

+ +
+ + +

+ +

+
+

+
+ +

+
+

+
+

+

9

8

7

6

5

4
3
2
1

9

8

7

6

5

4
3
2
1

8-12 Davis: Chap. 4 – Direct

ä Same example with nested dissection ordering

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

,,,,
@
@
@

S
S
S

�
�
�

A
A
A

�
�
�

+
+

++

+

+

+

++

+

++

+
+

+

+

+ +
++

+
+

+
+

+
+

+
+

+
+

+
+

+

9

8

7

65

43

21

1

9

8

7

5 6

3 2 4

8-13 Davis: Chap. 4 – Direct

Properties

ä The elimination tree is a spanning tree of the filled graph [a tree containing
all vertices] - obtained by removing edges.

ä If lik 6= 0 then i is an
ancestor of k in the tree
-1 In the previous example:
follow the creation of the fill-in
(6,8).

k

parent(k)

i

parent (k)

parent (k)
3

2

In particular: if aik 6= 0, k < i then i k

ä Consequence: no fill-in between branches of the same subtree

8-14 Davis: Chap. 4 – Direct

Elimination trees and the pattern of L

ä It is easy to determine the sparsity pattern of L because the pattern of a
given column is “inherited” by the ancestors in the tree.

Theorem: For i > j, lij 6= 0

iff j is an ancestor of some k ∈
AdjA(i) in the elimination tree.

k

parent(k)

i

parent (k)

parent (k)
3

2

j

j

In other
words:

lij 6= 0, i > j iff
∃k ∈ AdjA(i)s.t.

j k

In theory: To construct the
pattern of L, go up the tree
and accumulate the patterns
of the columns. Initially
L has the same pattern as
TRIL(A).

8

7

6

45

3

1

2

nz(L:5) := nz(L:5)

U
 U nz(L:3)

nz(L:2)

ä However: Let us assume tree is not available ahead of time

ä Solution: Parents can be obtained dynamically as the pattern is being
built.

ä This is the basis of symbolic factorization.

8-16 Davis: Chap. 4 – Direct

Notation :

ä nz(X) is the pattern of X (matrix or column, or row). A set of pairs (i, j)

ä tril(X) = Lower triangular part of pattern [matlab notation] {(i, j) ∈
X |i > j}

ä Idea: dynamically create the list of nodes needed to update L:,j.

8-17 Davis: Chap. 4 – Direct

ALGORITHM : 1 Symbolic factorization

1. Set: nz(L) = tril(nz(A)),
2. Set: list(j) = ∅, j = 1, · · · , n
3. For j = 1 : n

4. for k ∈ list(j) do
5. nz(L:,j) := nz(L:,j) ∪ nz(L:,k)

6. end
7. p = min{i > j | Li,j 6= 0}
8. list(p) := list(p) ∪ {j}
9. End

8-18 Davis: Chap. 4 – Direct

Example: Consider the earlier example:

1

2

6

4 7

8

5

3

1

2

6

4 7

8

5

3
List={1}

List=empty

L={2,5,8},p=2
1

2

6

4 7

8

5

3

List={2}

 List={1}
L={5,6,8}
p = 5

L: = {2,5,8} p= 2

List= empty List=empty

L={5,8}

p={5}

1

2

6

4 7

8

5

3

List={2,3}

L={5,6,8}
p = 5

List= empty
L = {2,5,8} , p = 2

List = {1}

List=empty

L={6,7}

p=6

1

2

6

4 7

8

5

3

L={5,6,8}

p = 5

List={2,3}

List={4}

List=empty
L={5,8},p=5

List= empty
L={2,6,8} , p = 2

List={1}

8-20 Davis: Chap. 4 – Direct

1

2

6

4 7

8

5

3

L={5,6,8}

List=empty

L:={5,8}

p=5
p = 5

List={4,5}

List={2,3},L={6,8}, p=6

L={6,7}

List=empty

List= empty
L={2,5,8} , p = 2

List={1}

p = 6

1

2

6

4 7

8

5

3

L={6,7}

L={5,6,8}
p = 5

List=empty

p = 6

List={4,5}

L={7,8}

p=7 List={6}

List= empty

List={1}

L={2,5,8} , p = 2
List={2,3},L={6,8},p=6

List=empty
L:={5,8}
p=5

8-21 Davis: Chap. 4 – Direct

Multifrontal methods

ä Start with the frontal method.

ä Recall: Finite element matrix: A =
∑

A[e]

A[e] = element matrix associated with element e.

ä An old idea: Execute Gaussian elimination as the elements are being
assembled

ä Dependency: variabes↔ elements, creates an assembly tree.

ä Method is called the frontal method

ä Very popular among finite element users: saves storage

8-22 – Direct2

The origin: Frontal method (circa 1970s)

ä Assemble A +

B then eliminate
x1

ä Elimination of
x1 creates an up-
date matrix

�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@

@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�

�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@

@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�

+
+

Elimin x2(A+B)+CElimin x1

A + B

4
F

7

6

5

3

2

1
E

D

C

B

A
7

6

5

3

2

1
E

D

C

B

A

x x xx
x x x
x x x
x xx x

+
+

x x xx
x x x
x x x
x xx x

xxxx
xxx
xxx
xxxx

x
x

x

x
x

x x xx
x

x

x
x

x
x x xx
x x x
x x x
x xx x

8-23 – Direct2

ä Matrix has 3 parts:

1) Fully assembled (no longer modified)

2) Frontal matrix: undergoes assembly + updates

3) Remainder: not accessed yet.

Remainder

Frontal
Assembled
Fully U

O

O

FL

LU

8-24 – Direct2

Assembly tree: - analogue to elimination tree

�
�
� @

@
@

�
�
� @

@
@

@
@
@�

�
�

@
@
@�

�
�

�
�
� @

@
@

@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�

�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@

@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�

�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@

FRONTAL

X

FX

EX

DX

CX

BA

A

B

C

D

E
1

2

3

5

6

7
A

B

C

D

E
1

2

3

5

6

7
F

4

ä Can proceed from several incoupled elements at the same time→ multi-
frontal technique [Duff & Reid, 1983]

8-25 – Direct2

Assembly tree
for Multifrontal
Method

@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�

�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@

@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�

�
�
�
�
�
�@
@
@
@
@
@�
�
�
�
�
�@
@
@
@
@
@

�
�
�
�

@
@
@
@
@
@
@
@
@
@

e
e
e
e%

%
%
%

@
@
@�

�
�

�
�
� @

@
@

@
@
@�

�
�

A

B

C

D

E
1

2

3

5

6

A

B

C

D

E
1

2

3

5

6

F
4 7

MULTIFRONTAL

F

X5

X4

X3

E

X2

DC

X1

BA

8-26 – Direct2

Multifrontal methods: extension to general matrices

ä Elimination tree replaces assembly tree

ä Proceed in post-order traversal of elimination tree in order not to violate
task dependencies.

ä When a node is eliminated an update matrix is created.

ä This matrix is passed to the parent which adds it to its frontal matrix.

ä Requires a stack of pending update matrices

ä Update matrices popped out as they are needed

ä Often implemented with nested dissection-type ordering

ä More complex than a left-looking algorithm
8-27 – Direct2

1 3 7

1
 3

 7

3
 7

2 3 9

2
 3

 9

3
 9

3 9

7 41

3

2

6

5

9

8

9

8

7

3

1 2

6

4 5

Update

Matrix Matrix Matrix
Frontal Frontal

Matrix
Update

3 7
UU1

2
=

=

3 7 8 9

3
 7

 8
 9

7 8 9

7
 8

 9

A
3

U2
+ U 1 +

Matrix

Frontal

Matrix

Update

3U U1

U 2

7 4

3 6

5

9

8

9

8

7

3 6

4 5

8-29 – Direct2

Eliminating nodes 1 and 2: What happens on matrix




1 ? ?

2 ? ?

? ? 3 ?

4 ? ?

5 ? ?

? ? 6 ?

? ? 7 ?

? ? ? 8 ?

? ? ? 9




← U1(3, :)

← U1(7, :)

← U2(3, :)

← U2(9, :)

8-30 – Direct2

Supernodes

Columns inherit patterns of the columns from which they are updated →
Many columns with same sparsity pattern. Supernode = a set of contiguous
columns in the Cholesky factor L that have the same sparsity pattern.

ä The set {j, j + 1, ..., j + s} is a supernode if

NZ(L∗,k) = NZ(L∗,k+1)
⋃{k + 1} j ≤ k<j + s

where NZ(L∗,k) is nonzero set of column k of L.

ä Other terms used: Mass elimination, indistinguishible nodes, active vari-
ables in front, subscript compression,...

ä Gain in performance due to savings in Gather-Scatter operations.
8-31 – Direct2

A few existing solvers (among many)

Code Method Scope Developer
CHOLMOD Left-Looking SPD T. Davis
MA67 Multifrontal Symm HSL
MA48 Right-Looking UnSymm HSL
SuperLU Left-Looking UnSymm S. Li (LBL)
Pardiso Left-Looking Symm. Patt. O. Schenk (Lugano)
MA41 Multifrontal Symm Patt. HSL
MUMPS Multifrontal Symm Patt. Amestoy (Toulouse)
Pastix Left+Right-Looking Symm, symm. patt. Labri (Bordeaux)
SuperLU Dist Right-Looking UnSymm S. Li (LBL)

8-32 – Direct2

