SPARSE DIRECT METHODS

* Building blocks for sparse direct solvers
* SPD case. Sparse Column Cholesky/
« Elimination Trees - Symbolic factorization

Direct Sparse Matrix Methods

‘ Problem addressed: | Linear systems Az =b

» We will consider mostly Cholesky —

» We will consider some implementation details and tricks used to develop
efficient solvers

Basic principles:

 Separate computation of structure from rest [symbolic factorization]
* Do as much work as possible statically
 Take advantage of clique formation (supernodes, mass-elimination).

8-2 Davis: Chap. 4 — Direct

Sparse Column Cholesky

Forj =1,...,n Do:
(G :n,j5) =a(j:n,j) L
Fork=1,...,57 — 1 Do: L

// cmod(k,j): 1
limg =l — Lk * ik
EndDo
// cdiv (j) [Scale]
l 1 A
litimg = Litim,/Ljj

EndDo

i =

8-3 Davis: Chap. 4 — Direct

The four essential stages of a solve

1. Reordering: |[A — A:= PAPT

» Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]

2. Symbolic Factorization: | Build static data structure.

» Exploits ‘elimination tree’, uses graph only.

» Also: 'supernodes’

3. Numerical Factorization: | Actual factorization A = LLT

» Pattern of L known. Use static data structure. Exploit supernodes

4. Triangular solves: | Solve Ly = bthen LTz = y

8-4 Davis: Chap. 4 — Direct

ELIMINATION TREES

The notion of elimination tree

» Elimination trees are useful in many different ways [theory, symbolic
factorization, etc..]

» For a matrix whose graph is a tree, parent of column 5 < n is defined by

Parent(j) = i, where a;; # 0 and i>j

» For a general matrix matrix, consider A = LLT, and G¥ = ‘filled’ graph =
graph of L + LT. Then

Parent(j) = min(i) s.t. a;; # 0and i>j

» Defines a tree rooted at column n (Elimintion tree).

8-6 Davis: Chap. 4 — Direct

Example: Original matrix and Graph

8-7

Davis: Chap. 4 — Direct

Filled matrix+graph

1 % * *
* 2 H «

3 * *

4 * x
* W x 5 H *
* ~ H 6 H N
* B 7 x
|~ B x * B x 8

8-8 Davis: Chap. 4 — Direct

Corresponding Elimination Tree

.
.
@,
7
’

’
~

’

7
7
~

~
~

~
~

» Parent(i) = ‘first nonzero entry in L(i+1:n,i)’

» Parent()=min{j >i|j € Adjer(3)}

8-9 Davis: Chap. 4 — Direct

Where does the elimination tree come from?

» Answer in the form of an excercise.

Consider the elimination steps for the pre-
vious example. A directed edge means a
row (column) modification. It shows the task
dependencies. There are unnecessary de-
pendencies. For example: 1 — 5 can be
removed because it is subsumed by the path
1—2—5.

To do: Remove all the redundant dependencies.. What is the result?

8-10 Davis: Chap. 4 — Direct

Facts about elimination trees

» Elimination Tree defines dependencies between columns.

» The root of a subtree cannot be used as pivot before any of its descen-
dents is processed.

» Elimination tree depends on ordering;
» Can be used to define ‘parallel’ tasks.

» For parallelism: flat and wide trees — good; thin and tall (e.g. of tridiago-
nal systems) — Bad.

» For parallel executions, Nested Dissection gives better trees than Minimun
Degree ordering.

8-11 Davis: Chap. 4 — Direct

Elim. tree depends on ordering (Not just the graph)
3 x 3 grid for 5-point stencil [natural ordering]

s

¥ ‘
7 8 9 ++4+ +
o B - DO
4 5 6 ¥ F ¥
+ 4+ +
,,,,,, + o+t
¥
123 Lo+ 44+
R ok s

8-12 Davis: Chap. 4 — Direct

» Same example with nested dissection ordering

+ T+t 9
B + L+t
1 7 2 + '+ + 8
IR . . A +
5 86 + + o+ 4+
+ o+ o+ o+
9 + o+ o+ + 5 (6)
34 o+ o+ /
+ + o+ o+) 2) (4
8-13 Davis: Chap. 4 — Direct

» The elimination tree is a spanning tree of the filled graph [a tree containing

all vertices] - obtained by removing edges.

» If 1, # 0 then i is an
ancestor of k in the tree

In the previous example:
follow the creation of the fill-in
(6,8).

In particular: if a;, # 0,k < ¢theni ~ k

parent(k)

3
parent (k)
*—> .—».—».N

» Consequence: no fill-in between branches of the same subtree

8-14

Davis: Chap. 4 — Direct

Elimination trees and the pattern of L

» |t is easy to determine the sparsity pattern of L because the pattern of a
given column is “inherited” by the ancestors in the tree.

Theorem: For i > j, li;j # 0
iff 7 is an ancestor of some k ¢
Adja(¢) in the elimination tree.

. 3k Adja(i)s.t.
In other Ly £ 0,7 > j iff : € lja(2)s
words:

Jj~k

In theory: To construct the
pattern of L, go up the tree
and accumulate the patterns

of the columns. Initially
L has the same pattern as
TRIL(A).

nz(L 5) :=
U nz(L:
U nalL:

nz(L:5)

é

Z/@/

» However: Let us assume tree is not available ahead of time

» Solution: Parents can be obtained dynamically as the pattern is being

built.

» This is the basis of symbolic factorization.

8-16

Davis: Chap. 4 — Direct

Notation :

ALGORITHM : 1. Symbolic factorization

» nz(X) is the pattern of X (matrix or column, or row). A set of pairs (2, 5) 1. Set: nz(L) = tril(nz(A)),
> tril(X) = Lower triangular part of pattern [matlab notation] {(i,j) € 2. Set:list(j) =0,j=1,-+-,n
C . 3. Forj=1:n
X |i >3}
4. fork € list(j) do
» |dea: dynamically create the list of nodes needed to update L. ;. 5. nz(L.;) := nz(L.;) Unz(L.})
6. end
7. p=min{i > j | L;; # 0}
8. list(p) := list(p) U {j}
9. End
8-17 Davis: Chap. 4 — Direct 8-18 Davis: Chap. 4 — Direct
5 List= empty
=(268),p =2
‘ e List={2,3}
@
Consider the earlier example: ‘ § List= empty ‘
L={258,p=2 List={1} @
ﬁ@ 0 LiSt={2,3} L={5,6,8} LISt=empty
L l ‘ p=5 L=(5,8},p=5
@—@ ? List=(4)
Lst={1} (2) +
List=empty List= empty L=(5,6,8} List=empty
L={2,5.8),p=2 L:= {258} p=2 p=5 ‘ 8 |58 @——~@
p={5} List=empty
‘ L=(6,7}
, -6
List={1} @ @ P

8-20

Davis: Chap. 4 — Direct

List= empty
L={258}, P =2 List={2,3},L={6,8}, p=6

@ (5)
¢ ‘ List=empty

List={1} L:={5,8}
L={5,6,8} p=5
p=5 ‘
ﬁ?ust:{&s)
@ @
List=empty
L={6,7}
p=6

8-21

List= empty
=258, P=2 | ist-(2,3),L=(6,8},p=6

3
| \List:empty

List=(1} ¢
L=(5,6,8} 13) L=(5.8)

p=5 p=5

List={4,5} ®

L={7,8}

p=7 List={6}
List=empty Q 6

L={6,7} p=6

Davis: Chap. 4 — Direct

Multifrontal methods

» Start with the frontal method.

» Recall: Finite element matrix: A=3 Al

Alel = element matrix associated with element e.

» An old idea: Execute Gaussian elimination as the elements are being
assembled

» Dependency: variabes <> elements, creates an assembly tree.
» Method is called the frontal method

» Very popular among finite element users: saves storage

8-22 — Direct2

The origin: Frontal method (circa 1970s)

) 5 A+B
ANV
l 4 X XX
7 | XXXX —
» Assemble A + B D F
B then eliminate
1 3 6
» Elimination of Elimin x1 (A+B)+C Elimin x2
z; Creates an up- IR TXXAK XXXXX
date matrix XX I B2 2 S I B2 234
X XX X+X X
(R
8-23 — Direct2

» Matrix has 3 parts:
1) Fully assembled (no longer modified)
2) Frontal matrix: undergoes assembly + updates

3) Remainder: not accessed yet.

Fully —
Assémbled | .]
Frontal —— L F:

Remainder—

8-24 — Direct2

N 2 5
Assembly tree: |- analogue to elimination tree c
1 A 4 E ;
2 5 X B p
] A S E FRONTALX Assembly tree 3 6
7 for Multifrontal

B /p_F Method MULTIFRONTA;/
’ ° / 7N
A/ \B c/ D F

» Can proceed from several incoupled elements at the same time — multi-
frontal technique [Duff & Reid, 1983]

8-25 — Direct2 8-26 — Direct2

Multifrontal methods: extension to general matrices

» Elimination tree replaces assembly tree

» Proceed in post-order traversal of elimination tree in order not to violate
task dependencies.

Often implemented with nested dissection-type ordering

» When a node is eliminated an update matrix is created. 1.3 7 23 9
—t U = =
» This matrix is passed to the parent which adds it to its frontal matrix. e oo 3 17 Mlie o e Uz
w) w ° 3 9
» Requires a stack of pending update matrices e “|eo w (e e
N~Neo o ©o | e ol®®
» Update matrices popped out as they are needed Frontal Update Frontal Update
Matrix Matrix Matrix Matrix
>
>

More complex than a left-looking algorithm

8-27 — Direct2

3 7
wle oo ® [us]
~le o 7809
o e o Neeoo
o o9 0 —P
© e) ©cle0 0
Frontal Update
Matrix Matrix
8-29 — Direct2

8-30

Eliminating nodes 1 and 2: | What happens on matrix
o N -
2 *
* | x| 3 * |l | < U(3,:) + Ux(3,:)
4 * | *
5 * *
6 *
* [| * «— Uy(7,)
* * 8| %
* | W * *|9 « Us(9,3)

— Direct2

Supernodes

Columns inherit patterns of the columns from which they are updated —
Many columns with same sparsity pattern. Supernode = a set of contiguous
columns in the Cholesky factor L that have the same sparsity pattern.

» Theset {j,5 +1,...,5 + s} is a supernode if

NZ(Luy) = NZ(Luji1) J{k+ 1} j < k<j +s

where NZ(L.,) is nonzero set of column k of L.

» Other terms used: Mass elimination, indistinguishible nodes, active vari-
ables in front, subscript compression,...

» Gain in performance due to savings in Gather-Scatter operations.
8-31 — Direct2

A few existing solvers (among many)

Code Method Scope Developer
CHOLMOD | Left-Looking SPD T. Davis

MAG67 Multifrontal Symm HSL

MA48 Right-Looking UnSymm HSL

SuperLU Left-Looking UnSymm S. Li (LBL)

Pardiso Left-Looking Symm. Patt. O. Schenk (Lugano)
MA41 Multifrontal Symm Patt. HSL

MUMPS Multifrontal Symm Patt. Amestoy (Toulouse)
Pastix Left+Right-Looking | Symm, symm. patt. | Labri (Bordeaux)

SuperLU_Dist

Right-Looking

UnSymm

S. Li (LBL)

8-32

— Direct2

