Iterative methods: relaxation techniques and projection methods

» Basic relaxation methods: Jacobi, Gauss-Seidel, SOR
» Convergence results

e Introduction to projection-type techniques

« Sample one-dimensional Projection methods

» Some theory and interpretation —

» See Chapter 4 and Chapter 5 of text for detalils.



Linear Systems: Basic Relaxation Schemes

Relaxation schemes: based on the decomposition A =D — FE — F

D = diag(A), —FE = strict lower part of A and —F' its

-F strict upper part.
» For example, Gauss-Seidel iteration :

D
_E (D — E)x*t) = Fa(®) 1 p

» Most common techniques 60 years ago.

» Now: used as smoothers in Multigrid or as preconditioners

€(k+1) _ €(kz) n p)

2 a;;

Note: If p{*) = ith component of
current residual b — Az then relaxation
version of GS is:

forter=1,---,n




Iteration matrices

» Jacobi, Gauss-Seidel, SOR, &
SSOR iterations are of the form

e Mjoo=D Y E+F)=I—D"A

[ MGS(A) = (D — E)_lF =1 — (D — E)_IA

relaxation: €FT) = welHF D 4 (1 — o)l

¢ Msor(A) = (D —wE) Y (WwF+(1—-—w)D)=1— (v 'D—-E)'A

e Related Splitting: (D — wE)z®*tY = [WF + (1 — w)D]z® + wb

#1| Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/




Iteration matrices |Previous methods based on splitting Aas: A= M — N

Mz=Nz+b — Mz =Nz* +p—

kt) = M-INz®) + M~1b = Gz™® + f

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

Gjeoe = DYWE+F)=1-D'A

Ggs = (D—E)'F=I1—-(D—-E)'A
Gsor = (D — wE) Y (wF + (1 — w)D)
I—(w'D-E)'A
Gssor = I —w(2 —w)(D —wF)'D(D - wE) A




General convergence result

Consider the iteration: k1) = Gz®) 4 f

(1) Assume that p(G) < 1. Then I — G is non-singular and G has a fixed
point. Iteration converges to a fixed point for any f and x(©.

(2) If iteration converges for any f and z(©) then p(G) < 1.

Example:

Richardson’s iteration

xk+) = 2*) L (b — Ax*)

#2| Assume A(A) C R. When does the iteration converge?
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A few well-known results |

» Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e.,
matrices such that

@il > >z lail,i=1,---,n

» SOR converges for 0 < w < 2 for SPD matrices

» The optimal w is known in theory for an important class of matrices called
2-cyclic matrices or matrices with property A.

» A matrix has property A if it can be
(symmetrically) permuted into a 2 x 2 block pap?r _ |Pr E
matrix whose diagonal blocks are diagonal. E' D,




» Let A be a matrix which has property A. Then the eigenvalues X of the
SOR iteration matrix and the eigenvalues p of the Jacobi iteration matrix are
related by

A+ w—1)2 = Aw?p?

» The optimal w for matrices with property A is given by
2

1+ +/1— p(B)?
where B is the Jacobi iteration matrix.

wopt




An observation & Introduction to Preconditioning

» The iteration z*+1) = Mz*) + f is attempting to solve (I — M)z = f.
Since M is of the form M = I — P! A this system can be rewritten as

P 1Az = P b
where for SSOR, we have

Pssor = (D — LJE)D_l(D — LUF)

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme <«— Preconditioned Fixed Point Ilteration




Projection Methods

» The main idea of projection methods is to extract an approximate solution
from a subspace.

» We define a subspace of approximants of dimension m and a set of m
conditions to extract the solution

» These conditions are typically expressed by orthogonality constraints.

» This defines one basic step which is repeated until convergence (alterna-
tively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be
viewed as a projection step




Background on projectors

» P is a projector if it is idempotent: P? = P

Decomposition R™ = K ¢ S defines a (unique) projector P:

e From x = x; + x2, set Px = x,. In this case:

e Ran(P) = K and Null(P) = S; dim(K) =m — dim(S) = n — m.
» Pb: express mapping ¢ —+ v = Px interms of K, S

» Noteve K, z—uéES

» Express 2nd part with m constraints: let L = S+, then

u = P iff {w"_"f,f,; » Projection onto K and orthogonally to L




PCI}/

» lllustration: P projects onto K and orthogonally to L
» When L = K projector is orthogonal.

» Note: Pz =0iffx L L.
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Projection methods for linear systems

» |nitial Problem: b— Ax =0
» Given two subspaces K and L of RY of dimension m, define ...

Find £ € K such that b—Ax L L

Approximate problem: ~
Petrov-Galerkin cond.

» m degrees of freedom (K) + m constraints (L) —
» To solve: A small linear system (‘projected problem’)

» Basic projection step. Typically a sequence of such steps are applied
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»  With a nonzero initial guess x,, approximate problem is

Find € xy+ K suchthat b — Az L L

Write £ = g + 6 and rq = b — Axy. — system for §:

#13

#4

9-13

Findd € K suchthatry, — Ad L L

Formulate Gauss-Seidel as a projection method -

Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’ of
coordinates span{e;, €;11, ..., €;1p}
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Matrix representation:

*V = [vy,...,vy,] & basis of K &

Let .
W = [wy,...,w,,]| abasis of L

» Write approximate solutionas £ = z9 + 6 = xo + Vy wherey € R™.
Then Petrov-Galerkin condition yields:

Wh(rg — AVy) =0
» Therefore,
Tr = o + V[WTAV]_leT‘O

Remark: In practice W1 AV is known from algorithm and has a simple struc-

ture [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;
V = [vy,...,v,] for K and

2. Choose bases:
W = [wy,...,wy] for L.

r<b— Ax,
3. Compute : y — (WTAV)'WTr,
x <+— x+ Vy.




Projection methods: Operator form representation

» Let IT = the orthogonal projector onto K and
Q the (obligue) projector onto K and orthogonally to L.

Qz”

Assumption: no vector of K is 1 to L

9-16
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In the case xy = 0, approximate problem amounts to solving

Qb— Ax) =0, x € K

or in operator form (solution is ITx) Q(b— Allx) =0

Question: |what accuracy can one expect? Let =* be the exact solution
1) We can’t do better than ||(I — IT)x*||2: || — =*||2 > ||(I — IT)x*||>

2) The residual of the exact solution for the approximate problem satisfies:

|6 — QATIIz"||; < ||QA(I — II)||of| (I — IDz" ||,
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Two Important Particular Cases.

[|

1. L=K
» When A is SPD then ||z* — &||4 = min,ck ||2* — z||a.
» Class of Galerkin or Orthogonal projection methods

» Important member of this class: Conjugate Gradient (CG) method

2. L:AKl.

In this case ||b — AZ||s = min,ck ||b — Az||2

» (Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES,
CGNR, ...




One-dimensional projection processes

K = span{d}
and
L = span{e}

Then £ = = + ad. Condition »r — Aéd L e yields

__ _(re)
& = TAde)

» Three popular choices:
(1) Steepest descent
(2) Minimal residual iteration

(3) Residual norm steepest descent
9-19 Text: 5 — Proj




1. Steepest descent. |

A is SPD. Take at each stepd = r and e = r.

r<b— Ax,

lteration: | o < (’I“, 7q)/(44"°9 ’I“)
xr < xr-+ ar

» Each step minimizes f(x) = ||z — =*||4 = (A(z — z*), (x — =*)) in
direction —V f.

» (Convergence guaranteed if A is SPD.

5| As is formulated, the above algorithm requires 2 ‘matvecs’ per step.
Reformulate it so only one is needed.




Convergence based on the Kantorovitch inequality: Let B be an SPD
maitrix, Amaz, Amin ItS largest and smallest eigenvalues. Then,

(B:I}, LB)(B_lilZ, CE) < (Amaa: + Amzn)z

v 0.
(337 w)2 - 4 AmamAmin ’ v #

» This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors dy, = z, — =i
generated by steepest descent satisfy:

Amaa: - Amzn

ldiialla < TS il

» Algorithm converges for any initial guess x,.




PrOOf Observe ||dk+1||?4 — (Adk_|_1, dk_|_1) — (’I"k_|_1, dk_|_1)
» Dby substitution,
ldki1]l% = (Prr1, dp — ory)

» By construction ryy1 L 7 S0 we gét ||di+1]|4 = (Tk+1, di). Now:

ldit1lly, = (Te — arAry, dy)

= (rr, A7'r1) — ar(rr, 1)

o 9 (rka rk) (’rka rk)
= lldla (1  (re, Ary) § (Tk; A_l’rk;)> .

Result follows by applying the Kantorovich inequality. [l
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2. Minimal residual iteration. |

A positive definite (A 4+ AT is SPD). Take at each step d = r and e = Ar.

r < b— Ax,

lteration: | o < (A’l“, ’I“)/(A’I’, AT)
r < T+ ar

» Each step minimizes f(x) = ||b — Ax||3 in direction r.

» Converges under the condition that A + AT is SPD.

#6| As is formulated, the above algorithm would require 2 'matvecs’ at each
step. Reformulate it so that only one matvec is required




Convergence \

Let A be a real positive definite matrix, and let
B = Anin(A+ A")/2, o =|Al:.

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

II/2 1/2
Irucalla < (1= 25) " el

» In this case Min. Res. converges for any initial guess x.




Proof: Similar to steepest descent. Start with

17413 = (Thy1, 7r — Qi ATL)

= (Tka15Tk) — Og(Trr1, ATk).

By construction, ri,1 = 7. — apArg IS L Aryg, SO:
||7°k:+1||§ = (Pka1,7Tk) = (T — aArg, r). Then:

1Az |7l I

9-25

”rk+1H§

(Tky T) — O (ATg, T1)
B (Arka rk) (A'rka rk)

('rka Tk:) (Arka Ark)

T (1

= [Irell; (1

Result follows from the inequalities (Ax,x)/(x,x) > pu > 0 and ||Arg|ls <

~ (Arg,re)? el

(i T8)% || ATE||3

).

)
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3. Residual norm steepest descent. |

A is arbitrary (nonsingular). Take at each step d = ATr and e = Ad.

r<b— Ax,d = ATlr
lteration:| a < ||d||5/]|Ad|;
r+— x+ ad

» Each step minimizes f(z) = ||b — Az||? in direction —V f.

» |mportant Note: equivalent to usual steepest descent applied to normal
equations ATAx = ATh .

» (Converges under the condition that A is nonsingular.

#7| Take a look at demo1DProj.m in /iters.




