
Iterative methods: relaxation techniques and projection methods

• Basic relaxation methods: Jacobi, Gauss-Seidel, SOR

• Convergence results

• Introduction to projection-type techniques

• Sample one-dimensional Projection methods

• Some theory and interpretation –

• See Chapter 4 and Chapter 5 of text for details.

Linear Systems: Basic Relaxation Schemes

Relaxation schemes: based on the decomposition A = D − E − F

D

−F

−E

D = diag(A), −E = strict lower part of A and −F its
strict upper part.
ä For example, Gauss-Seidel iteration :

(D − E)x(k+1) = Fx(k) + b

ä Most common techniques 60 years ago.

ä Now: used as smoothers in Multigrid or as preconditioners

Note: If ρ(k)
i = ith component of

current residual b−Ax then relaxation
version of GS is:

ξ
(k+1)
i = ξ

(k)
i +

ρ
(k)
i

aii

for i = 1, · · · , n

9-2 Text: 4 – BasicIt

Iteration matrices

ä Jacobi, Gauss-Seidel, SOR, &
SSOR iterations are of the form

x(k+1) = Mx(k) + f

• MJac = D−1(E + F) = I −D−1A

• MGS(A) = (D − E)−1F = I − (D − E)−1A

SOR relaxation: ξ
(k+1)
i = ωξ

(GS,k+1)
i + (1− ω)ξ

(k)
i

• MSOR(A) = (D − ωE)−1(ωF + (1− ω)D) = I − (ω−1D − E)−1A

• Related Splitting: (D − ωE)x(k+1) = [ωF + (1− ω)D]x(k) + ωb

-1 Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/

9-3 Text: 4 – BasicIt

Iteration matrices Previous methods based on splittingA as: A = M −N

Mx = Nx+ b → Mx(k+1) = Nx(k) + b→

x(k+1) = M−1Nx(k) +M−1b ≡ Gx(k) + f

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

GJac = D−1(E + F) = I −D−1A

GGS = (D − E)−1F = I − (D − E)−1A

GSOR = (D − ωE)−1(ωF + (1− ω)D)

= I − (ω−1D − E)−1A

GSSOR = I − ω(2− ω)(D − ωF)−1D(D − ωE)−1A

9-4 Text: 4 – BasicIt

General convergence result

Consider the iteration: x(k+1) = Gx(k) + f

(1) Assume that ρ(G) < 1. Then I − G is non-singular and G has a fixed
point. Iteration converges to a fixed point for any f and x(0).

(2) If iteration converges for any f and x(0) then ρ(G) < 1.

Example: Richardson’s iteration

x(k+1) = x(k) + α(b−Ax(k))

-2 Assume Λ(A) ⊂ R. When does the iteration converge?

9-5 Text: 4 – BasicIt

A few well-known results

ä Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e.,
matrices such that

|aii| >
∑

j 6=i |aij|, i = 1, · · · , n

ä SOR converges for 0 < ω < 2 for SPD matrices

ä The optimal ω is known in theory for an important class of matrices called
2-cyclic matrices or matrices with property A.

ä A matrix has property A if it can be
(symmetrically) permuted into a 2 × 2 block
matrix whose diagonal blocks are diagonal.

PAP T =

[
D1 E

ET D2

]

9-6 Text: 4 – BasicIt

ä Let A be a matrix which has property A. Then the eigenvalues λ of the
SOR iteration matrix and the eigenvalues µ of the Jacobi iteration matrix are
related by

(λ+ ω − 1)2 = λω2µ2

ä The optimal ω for matrices with property A is given by

ωopt =
2

1 +
√

1− ρ(B)2

where B is the Jacobi iteration matrix.

9-7 Text: 4 – BasicIt

An observation & Introduction to Preconditioning

ä The iteration x(k+1) = Mx(k) + f is attempting to solve (I −M)x = f .
Since M is of the form M = I − P−1A this system can be rewritten as

P−1Ax = P−1b

where for SSOR, we have

PSSOR = (D − ωE)D−1(D − ωF)

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration

9-8 Text: 4 – BasicIt

Projection Methods

ä The main idea of projection methods is to extract an approximate solution
from a subspace.

ä We define a subspace of approximants of dimension m and a set of m
conditions to extract the solution

ä These conditions are typically expressed by orthogonality constraints.

ä This defines one basic step which is repeated until convergence (alterna-
tively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be
viewed as a projection step

9-9 Text: 5 – Proj

Background on projectors

ä P is a projector if it is idempotent: P 2 = P

Decomposition Rn = K ⊕ S defines a (unique) projector P :

• From x = x1 + x2, set Px = x1. In this case:

• Ran(P) = K and Null(P) = S; dim(K) = m→ dim(S) = n−m.

ä Pb: express mapping x→ u = Px in terms of K,S

ä Note u ∈ K, x− u ∈ S

ä Express 2nd part with m constraints: let L = S⊥, then

u = Px iff
{

u∈K
x−u⊥L ä Projection onto K and orthogonally to L

9-10 Text: 5 – Proj

�
��

�
��

�
��

��
��

�
��

�
��
�

�
��

�
��

�
��
�
��
�
��
�
��
��KL

H
HH

H
HH

H
HH

H
HH

HH

HH
H

HH
H

HH
H

HH
H

HH

x

��
HH

��

��

��

	
Px

�
�
�
�
�
�
�
�
�
�
�
�
�
�

ä Illustration: P projects onto K and orthogonally to L

ä When L = K projector is orthogonal.

ä Note: Px = 0 iff x ⊥ L.

9-11 Text: 5 – Proj

Projection methods for linear systems

ä Initial Problem: b−Ax = 0

ä Given two subspaces K and L of RN of dimension m, define ...

Approximate problem: Find x̃ ∈ K such that b−Ax̃ ⊥ L︸ ︷︷ ︸
Petrov-Galerkin cond.

ä m degrees of freedom (K) + m constraints (L)→

ä To solve: A small linear system (‘projected problem’)

ä Basic projection step. Typically a sequence of such steps are applied

9-12 Text: 5 – Proj

ä With a nonzero initial guess x0, approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L

Write x̃ = x0 + δ and r0 = b−Ax0. → system for δ:

Find δ ∈ K such that r0 −Aδ ⊥ L

-3 Formulate Gauss-Seidel as a projection method -

-4 Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’ of
coordinates span{ei, ei+1, ..., ei+p}

9-13 Text: 5 – Proj

Matrix representation:

Let
• V = [v1, . . . , vm] a basis of K &

•W = [w1, . . . , wm] a basis of L

ä Write approximate solution as x̃ = x0 + δ ≡ x0 + V y where y ∈ Rm.
Then Petrov-Galerkin condition yields:

W T (r0 −AV y) = 0

ä Therefore,

x̃ = x0 + V [W TAV]−1W Tr0

Remark: In practice W TAV is known from algorithm and has a simple struc-
ture [tridiagonal, Hessenberg,..]
9-14 Text: 5 – Proj

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases:
V = [v1, . . . , vm] for K and
W = [w1, . . . , wm] for L.

3. Compute :
r ← b−Ax,
y ← (W TAV)−1W Tr,

x← x+ V y.

9-15 Text: 5 – Proj

Projection methods: Operator form representation

ä Let Π = the orthogonal projector onto K and
Q the (oblique) projector onto K and orthogonally to L.

Πx ∈ K, x−Πx ⊥ K
Qx ∈ K, x−Qx ⊥ L

��
��

�
��

�
��
�
��
��

�
��

��
��
�
��
�
��
��

K

L

H
HH

H
HH

H
HH

H

H
HH

H
HH

H
HH

H

?

x

Πx��

��

��

	
Qx

�
�
�
�
�
�
�
�
�
�

Π and Q projectors

Assumption: no vector of K is ⊥ to L

9-16 Text: 5 – Proj

In the case x0 = 0, approximate problem amounts to solving

Q(b−Ax) = 0, x ∈ K

or in operator form (solution is Πx) Q(b−AΠx) = 0

Question: what accuracy can one expect? Let x∗ be the exact solution

1) We can’t do better than ‖(I −Π)x∗‖2: ‖x̃− x∗‖2 ≥ ‖(I −Π)x∗‖2

2) The residual of the exact solution for the approximate problem satisfies:

‖b−QAΠx∗‖2 ≤ ‖QA(I −Π)‖2‖(I −Π)x∗‖2

9-17 Text: 5 – Proj

Two Important Particular Cases.

1. L = K

ä When A is SPD then ‖x∗ − x̃‖A = minz∈K ‖x∗ − z‖A.

ä Class of Galerkin or Orthogonal projection methods

ä Important member of this class: Conjugate Gradient (CG) method

2. L = AK .

In this case ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2

ä Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES,
CGNR, ...

9-18 Text: 5 – Proj

One-dimensional projection processes

K = span{d}
and

L = span{e}

Then x̃ = x+ αd. Condition r −Aδ ⊥ e yields

α = (r,e)
(Ad,e)

ä Three popular choices:

(1) Steepest descent

(2) Minimal residual iteration

(3) Residual norm steepest descent
9-19 Text: 5 – Proj

1. Steepest descent.

A is SPD. Take at each step d = r and e = r.

Iteration:
r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr

ä Each step minimizes f(x) = ‖x − x∗‖2
A = (A(x − x∗), (x − x∗)) in

direction −∇f .

ä Convergence guaranteed if A is SPD.

-5 As is formulated, the above algorithm requires 2 ‘matvecs’ per step.
Reformulate it so only one is needed.

9-20 Text: 5 – Proj

Convergence based on the Kantorovitch inequality: Let B be an SPD
matrix, λmax, λmin its largest and smallest eigenvalues. Then,

(Bx, x)(B−1x, x)

(x, x)2
≤

(λmax + λmin)
2

4 λmaxλmin
, ∀x 6= 0.

ä This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors dk = x∗−xk
generated by steepest descent satisfy:

‖dk+1‖A ≤
λmax − λmin
λmax + λmin

‖dk‖A

ä Algorithm converges for any initial guess x0.

9-21 Text: 5 – Proj

Proof: Observe ‖dk+1‖2
A = (Adk+1, dk+1) = (rk+1, dk+1)

ä by substitution,
‖dk+1‖2

A = (rk+1, dk − αkrk)

ä By construction rk+1 ⊥ rk so we get ‖dk+1‖2
A = (rk+1, dk). Now:

‖dk+1‖2
A = (rk − αkArk, dk)

= (rk, A
−1rk)− αk(rk, rk)

= ‖dk‖2
A

(
1−

(rk, rk)

(rk, Ark)
×

(rk, rk)

(rk, A−1rk)

)
.

Result follows by applying the Kantorovich inequality.

9-22 Text: 5 – Proj

2. Minimal residual iteration.

A positive definite (A+AT is SPD). Take at each step d = r and e = Ar.

Iteration:
r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction r.

ä Converges under the condition that A+AT is SPD.

-6 As is formulated, the above algorithm would require 2 ’matvecs’ at each
step. Reformulate it so that only one matvec is required

9-23 Text: 5 – Proj

Convergence

Let A be a real positive definite matrix, and let

µ = λmin(A+AT)/2, σ = ‖A‖2.

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

‖rk+1‖2 ≤
(

1−
µ2

σ2

)1/2

‖rk‖2

ä In this case Min. Res. converges for any initial guess x0.

9-24 Text: 5 – Proj

Proof: Similar to steepest descent. Start with

‖rk+1‖2
2 = (rk+1, rk − αkArk)

= (rk+1, rk)− αk(rk+1, Ark).

By construction, rk+1 = rk − αkArk is ⊥ Ark, so:
‖rk+1‖2

2 = (rk+1, rk) = (rk − αkArk, rk). Then:

‖rk+1‖2
2 = (rk, rk)− αk(Ark, rk)

= ‖rk‖2
2

(
1−

(Ark, rk)

(rk, rk)

(Ark, rk)

(Ark, Ark)

)
= ‖rk‖2

2

(
1−

(Ark, rk)
2

(rk, rk)2

‖rk‖2
2

‖Ark‖2
2

)
.

Result follows from the inequalities (Ax, x)/(x, x) ≥ µ > 0 and ‖Ark‖2 ≤
‖A‖2 ‖rk‖2.

9-25 Text: 5 – Proj

3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step d = ATr and e = Ad.

Iteration:
r ← b−Ax, d = ATr
α← ‖d‖2

2/‖Ad‖2
2

x← x+ αd

ä Each step minimizes f(x) = ‖b−Ax‖2
2 in direction −∇f .

ä Important Note: equivalent to usual steepest descent applied to normal
equations ATAx = ATb .

ä Converges under the condition that A is nonsingular.

-7 Take a look at demo1DProj.m in /iters.

9-26 Text: 5 – Proj

