Iterative methods: relaxation techniques and projection methods

- Basic relaxation methods: Jacobi, Gauss-Seidel, SOR
- Convergence results
- Introduction to projection-type techniques
- Sample one-dimensional Projection methods
- Some theory and interpretation -
- See Chapter 4 and Chapter 5 of text for details.

Linear Systems: Basic Relaxation Schemes

Relaxation schemes: based on the decomposition $A=D-E-F$

$\boldsymbol{D}=\operatorname{diag}(\mathrm{A}),-\boldsymbol{E}=$ strict lower part of \boldsymbol{A} and $-\boldsymbol{F}$ its strict upper part.
> For example, Gauss-Seidel iteration :

$$
(D-E) x^{(k+1)}=F \boldsymbol{x}^{(k)}+b
$$

> Most common techniques 60 years ago.
$>$ Now: used as smoothers in Multigrid or as preconditioners
Note: If $\rho_{i}^{(k)}=i$ th component of current residual $b-A x$ then relaxation version of GS is:

$$
\begin{aligned}
& \xi_{i}^{(k+1)}=\xi_{i}^{(k)}+\frac{\rho_{i}^{(k)}}{a_{i i}} \\
& \text { for } i=1, \cdots, n
\end{aligned}
$$

Iteration matrices

> Jacobi, Gauss-Seidel, SOR, \& SSOR iterations are of the form

$$
x^{(k+1)}=M x^{(k)}+f
$$

- $M_{J a c}=D^{-1}(E+F)=I-D^{-1} A$
- $M_{G S}(A)=(D-E)^{-1} F=I-(D-E)^{-1} A$

SOR relaxation: $\xi_{i}^{(k+1)}=\omega \xi_{i}^{(G S, k+1)}+(1-\omega) \xi_{i}^{(k)}$

- $M_{S O R}(A)=(D-\omega E)^{-1}(\omega F+(1-\omega) D)=I-\left(\omega^{-1} D-E\right)^{-1} A$
- Related Splitting: $(D-\omega E) x^{(k+1)}=[\omega F+(1-\omega) D] x^{(k)}+\omega b$
(1) Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/

Iteration matrices $\operatorname{Previous~methods~based~on~splitting~} A$ as: $A=M-N$

$$
M x=N x+b \quad \rightarrow \quad M x^{(k+1)}=N x^{(k)}+b \rightarrow
$$

$$
x^{(k+1)}=M^{-1} N x^{(k)}+M^{-1} b \equiv G x^{(k)}+f
$$

Jacobi, Gauss-Seidel, SOR, \& SSOR iterations are of the form

$$
\begin{aligned}
G_{J a c} & =D^{-1}(E+F)=I-D^{-1} A \\
G_{G S} & =(D-E)^{-1} F=I-(D-E)^{-1} A \\
G_{S O R} & =(D-\omega E)^{-1}(\omega F+(1-\omega) D) \\
& =I-\left(\omega^{-1} D-E\right)^{-1} A \\
G_{S S O R} & =I-\omega(2-\omega)(D-\omega F)^{-1} D(D-\omega E)^{-1} A
\end{aligned}
$$

General convergence result

Consider the iteration: $\quad x^{(k+1)}=G x^{(k)}+f$
(1) Assume that $\rho(G)<1$. Then $I-G$ is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $x^{(0)}$.
(2) If iteration converges for any f and $x^{(0)}$ then $\rho(G)<1$.

Example: Richardson's iteration

$$
x^{(k+1)}=x^{(k)}+\alpha\left(b-A x^{(k)}\right)
$$

(02 Assume $\Lambda(A) \subset \mathbb{R}$. When does the iteration converge?

A few well-known results

> Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., matrices such that

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, i=1, \cdots, n
$$

$>$ SOR converges for $0<\omega<2$ for SPD matrices
$>$ The optimal ω is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A.
$>$ A matrix has property \boldsymbol{A} if it can be (symmetrically) permuted into a 2×2 block matrix whose diagonal blocks are diagonal.

$$
P A P^{T}=\left[\begin{array}{cc}
D_{1} & E \\
E^{T} & D_{2}
\end{array}\right]
$$

$>$ Let \boldsymbol{A} be a matrix which has property \boldsymbol{A}. Then the eigenvalues λ of the SOR iteration matrix and the eigenvalues μ of the Jacobi iteration matrix are related by

$$
(\lambda+\omega-1)^{2}=\lambda \omega^{2} \mu^{2}
$$

$>$ The optimal ω for matrices with property \boldsymbol{A} is given by

$$
\omega_{o p t}=\frac{2}{1+\sqrt{1-\rho(B)^{2}}}
$$

where B is the Jacobi iteration matrix.

An observation \& Introduction to Preconditioning

$>$ The iteration $x^{(k+1)}=M x^{(k)}+f$ is attempting to solve $(I-M) x=f$. Since \boldsymbol{M} is of the form $\boldsymbol{M}=\boldsymbol{I}-P^{-1} A$ this system can be rewritten as

$$
P^{-1} A x=P^{-1} b
$$

where for SSOR, we have

$$
P_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

referred to as the SSOR 'preconditioning' matrix.
In other words:

Relaxation Scheme \Longleftrightarrow Preconditioned Fixed Point Iteration

Projection Methods

> The main idea of projection methods is to extract an approximate solution from a subspace.

- We define a subspace of approximants of dimension m and a set of m conditions to extract the solution
> These conditions are typically expressed by orthogonality constraints.
> This defines one basic step which is repeated until convergence (alternatively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be viewed as a projection step

Background on projectors

$>P$ is a projector if it is idempotent: $P^{2}=P$
Decomposition $\mathbb{R}^{n}=K \oplus S$ defines a (unique) projector P :

- From $x=x_{1}+x_{2}$, set $\boldsymbol{P x}=x_{1}$. In this case:
- $\operatorname{Ran}(P)=K$ and $\operatorname{Null}(P)=S ; \operatorname{dim}(K)=m \rightarrow \operatorname{dim}(S)=n-m$.
$>$ Pb: express mapping $x \rightarrow u=P x$ in terms of K, S
$>$ Note $u \in K, x-u \in S$
$>$ Express 2nd part with m constraints: let $L=S^{\perp}$, then

$$
u=P x \text { iff }\left\{\begin{array}{c}
u \in K \\
x-u \perp L
\end{array}>\text { Projection onto } K \text { and orthogonally to } L\right.
$$

> Illustration: \boldsymbol{P} projects onto \boldsymbol{K} and orthogonally to L
$>$ When $L=K$ projector is orthogonal.
$>$ Note: $P x=0$ iff $x \perp L$.

Projection methods for linear systems

> Initial Problem:

$$
b-A x=0
$$

$>$ Given two subspaces K and L of \mathbb{R}^{N} of dimension m, define ...

Approximate problem:
Find $\tilde{\boldsymbol{x}} \in K$ such that $\quad \underbrace{b-\boldsymbol{A} \tilde{x} \perp L}$ Petrov-Galerkin cond.
$>m$ degrees of freedom $(\boldsymbol{K})+m$ constraints $(\boldsymbol{L}) \rightarrow$
> To solve: A small linear system ('projected problem')
> Basic projection step. Typically a sequence of such steps are applied
$>$ With a nonzero initial guess x_{0}, approximate problem is
Find $\quad \tilde{x} \in x_{0}+\boldsymbol{K}$ such that $\quad b-\boldsymbol{A} \tilde{x} \perp L$
Write $\tilde{x}=x_{0}+\delta$ and $r_{0}=b-A x_{0} . \rightarrow$ system for δ :

Find $\boldsymbol{\delta} \in \boldsymbol{K}$ such that $r_{0}-\boldsymbol{A} \boldsymbol{\delta} \perp \boldsymbol{L}$
®03 $_{3}$ Formulate Gauss-Seidel as a projection method -
π_{0} Generalize Gauss-Seidel by defining subspaces consisting of 'blocks' of coordinates span $\left\{e_{i}, e_{i+1}, \ldots, e_{i+p}\right\}$

Matrix representation:

Let

- $V=\left[v_{1}, \ldots, v_{m}\right]$ a basis of K \&
- $W=\left[w_{1}, \ldots, w_{m}\right]$ a basis of L
$>$ Write approximate solution as $\tilde{x}=x_{0}+\delta \equiv x_{0}+V y$ where $y \in \mathbb{R}^{m}$. Then Petrov-Galerkin condition yields:

$$
W^{T}\left(r_{0}-A V y\right)=0
$$

> Therefore,

$$
\tilde{x}=x_{0}+V\left[W^{T} A V\right]^{-1} W^{T} r_{0}
$$

Remark: In practice $\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;
2. Choose bases:

$$
\begin{aligned}
& \boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right] \text { for } \boldsymbol{K} \text { and } \\
& \boldsymbol{W}=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right] \text { for } \boldsymbol{L} .
\end{aligned}
$$

$$
r \leftarrow b-A x
$$

3. Compute :

$$
\begin{aligned}
& y \leftarrow\left(W^{T} A V\right)^{-1} W^{T} r \\
& x \leftarrow x+V y
\end{aligned}
$$

Projection methods: Operator form representation

> Let $\Pi=$ the orthogonal projector onto \boldsymbol{K} and
\mathcal{Q} the (oblique) projector onto K and orthogonally to L.

$$
\begin{aligned}
& \Pi x \in K, x-\Pi x \perp K \\
& \mathcal{Q} x \in K, x-\mathcal{Q} x \perp L
\end{aligned}
$$

Assumption: no vector of K is \perp to L

In the case $x_{0}=0$, approximate problem amounts to solving

$$
\mathcal{Q}(b-A x)=0, x \in K
$$

or in operator form (solution is Πx)

$$
\mathcal{Q}(b-A \Pi x)=0
$$

Question: what accuracy can one expect? Let x^{*} be the exact solution

1) We can't do better than $\left\|(I-\Pi) x^{*}\right\|_{2}: \quad\left\|\tilde{x}-x^{*}\right\|_{2} \geq\left\|(I-\Pi) x^{*}\right\|_{2}$
2) The residual of the exact solution for the approximate problem satisfies:

$$
\left\|b-\mathcal{Q} A \Pi x^{*}\right\|_{2} \leq\|\mathcal{Q} A(I-\Pi)\|_{2}\left\|(I-\Pi) x^{*}\right\|_{2}
$$

Two Important Particular Cases.

1. $L=K$
$>$ When A is SPD then $\left\|x^{*}-\tilde{x}\right\|_{A}=\min _{z \in K}\left\|x^{*}-z\right\|_{A}$.
> Class of Galerkin or Orthogonal projection methods
$>$ Important member of this class: Conjugate Gradient (CG) method
2. $L=A K$.

In this case $\|\boldsymbol{b}-\boldsymbol{A} \tilde{\boldsymbol{x}}\|_{2}=\min _{z \in K}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{z}\|_{2}$
> Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...

One-dimensional projection processes

$$
\begin{aligned}
K & =\operatorname{span}\{d\} \\
& \text { and } \\
L & =\operatorname{span}\{e\}
\end{aligned}
$$

Then $\tilde{x}=x+\alpha d$. Condition $r-A \delta \perp e$ yields

$$
\alpha=\frac{(r, e)}{(A d, e)}
$$

> Three popular choices:
(1) Steepest descent
(2) Minimal residual iteration
(3) Residual norm steepest descent

1. Steepest descent.

A is SPD. Take at each step $d=r$ and $e=r$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x \\
& \alpha \leftarrow(r, r) /(A r, r) \\
& x \leftarrow x+\alpha r
\end{aligned}
$$

$>$ Each step minimizes $f(x)=\left\|x-x^{*}\right\|_{A}^{2}=\left(A\left(x-x^{*}\right),\left(x-x^{*}\right)\right)$ in direction $-\nabla f$.
$>$ Convergence guaranteed if \boldsymbol{A} is SPD.
As As is formulated, the above algorithm requires 2 'matvecs' per step. Reformulate it so only one is needed.

Convergence based on the Kantorovitch inequality: Let B be an SPD matrix, $\boldsymbol{\lambda}_{\max }, \boldsymbol{\lambda}_{\text {min }}$ its largest and smallest eigenvalues. Then,

$$
\frac{(B x, x)\left(B^{-1} x, x\right)}{(x, x)^{2}} \leq \frac{\left(\lambda_{\max }+\lambda_{\min }\right)^{2}}{4 \lambda_{\max } \lambda_{\min }}, \quad \forall x \neq 0 .
$$

$>$ This helps establish the convergence result
Let A an SPD matrix. Then, the A-norms of the error vectors $d_{k}=x_{*}-x_{k}$ generated by steepest descent satisfy:

$$
\left\|d_{k+1}\right\|_{A} \leq \frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}\left\|d_{k}\right\|_{A}
$$

$>$ Algorithm converges for any initial guess x_{0}.

Proof: Observe $\left\|d_{k+1}\right\|_{A}^{2}=\left(A d_{k+1}, d_{k+1}\right)=\left(r_{k+1}, d_{k+1}\right)$
> by substitution,

$$
\left\|d_{k+1}\right\|_{A}^{2}=\left(r_{k+1}, d_{k}-\alpha_{k} r_{k}\right)
$$

$>$ By construction $r_{k+1} \perp r_{k}$ so we get $\left\|d_{k+1}\right\|_{A}^{2}=\left(r_{k+1}, d_{k}\right)$. Now:

$$
\begin{aligned}
\left\|d_{k+1}\right\|_{A}^{2} & =\left(r_{k}-\alpha_{k} A r_{k}, d_{k}\right) \\
& =\left(r_{k}, A^{-1} r_{k}\right)-\alpha_{k}\left(r_{k}, r_{k}\right) \\
& =\left\|d_{k}\right\|_{A}^{2}\left(1-\frac{\left(r_{k}, r_{k}\right)}{\left(r_{k}, A r_{k}\right)} \times \frac{\left(r_{k}, r_{k}\right)}{\left(r_{k}, A^{-1} r_{k}\right)}\right) .
\end{aligned}
$$

Result follows by applying the Kantorovich inequality.

2. Minimal residual iteration.

A positive definite ($\boldsymbol{A}+\boldsymbol{A}^{T}$ is SPD). Take at each step $d=r$ and $e=\boldsymbol{A r}$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x \\
& \alpha \leftarrow(A r, r) /(A r, A r) \\
& x \leftarrow x+\alpha r
\end{aligned}
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction r.
$>$ Converges under the condition that $A+A^{T}$ is SPD.
\& As is formulated, the above algorithm would require 2 'matvecs' at each step. Reformulate it so that only one matvec is required

Convergence

Let \boldsymbol{A} be a real positive definite matrix, and let

$$
\mu=\lambda_{\min }\left(A+A^{T}\right) / 2, \quad \sigma=\|A\|_{2} .
$$

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

$$
\left\|r_{k+1}\right\|_{2} \leq\left(1-\frac{\mu^{2}}{\sigma^{2}}\right)^{1 / 2}\left\|r_{k}\right\|_{2}
$$

$>$ In this case Min. Res. converges for any initial guess x_{0}.

Proof: Similar to steepest descent. Start with

$$
\begin{aligned}
\left\|r_{k+1}\right\|_{2}^{2} & =\left(r_{k+1}, r_{k}-\alpha_{k} A r_{k}\right) \\
& =\left(r_{k+1}, r_{k}\right)-\alpha_{k}\left(r_{k+1}, A r_{k}\right)
\end{aligned}
$$

By construction, $r_{k+1}=r_{k}-\alpha_{k} A r_{k}$ is $\perp A r_{k}$, so:

$$
\left\|r_{k+1}\right\|_{2}^{2}=\left(r_{k+1}, r_{k}\right)=\left(r_{k}-\alpha_{k} A r_{k}, r_{k}\right) . \text { Then: }
$$

$$
\begin{aligned}
\left\|r_{k+1}\right\|_{2}^{2} & =\left(r_{k}, r_{k}\right)-\alpha_{k}\left(A r_{k}, r_{k}\right) \\
& =\left\|r_{k}\right\|_{2}^{2}\left(1-\frac{\left(A r_{k}, r_{k}\right)}{\left(r_{k}, r_{k}\right)} \frac{\left(A r_{k}, r_{k}\right)}{\left(A r_{k}, A r_{k}\right)}\right) \\
& =\left\|r_{k}\right\|_{2}^{2}\left(1-\frac{\left(A r_{k}, r_{k}\right)^{2}}{\left(r_{k}, r_{k}\right)^{2}} \frac{\left\|r_{k}\right\|_{2}^{2}}{\left\|A r_{k}\right\|_{2}^{2}}\right)
\end{aligned}
$$

Result follows from the inequalities $(\boldsymbol{A x}, \boldsymbol{x}) /(\boldsymbol{x}, \boldsymbol{x}) \geq \mu>0$ and $\left\|A r_{k}\right\|_{2} \leq$ $\|A\|_{2}\left\|r_{k}\right\|_{2}$.

3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step $d=A^{T} r$ and $e=A d$.

$$
\text { Iteration: } \begin{array}{l|l}
& r \leftarrow b-A x, d=A^{T} r \\
\alpha \leftarrow\|d\|_{2}^{2} /\|A d\|_{2}^{2} \\
x \leftarrow x+\alpha d
\end{array}
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction $-\nabla f$.
> Important Note: equivalent to usual steepest descent applied to normal equations $A^{T} A x=A^{T} b$.
$>$ Converges under the condition that \boldsymbol{A} is nonsingular.
«7 Take a look at demo1DProj.m in /iters.

