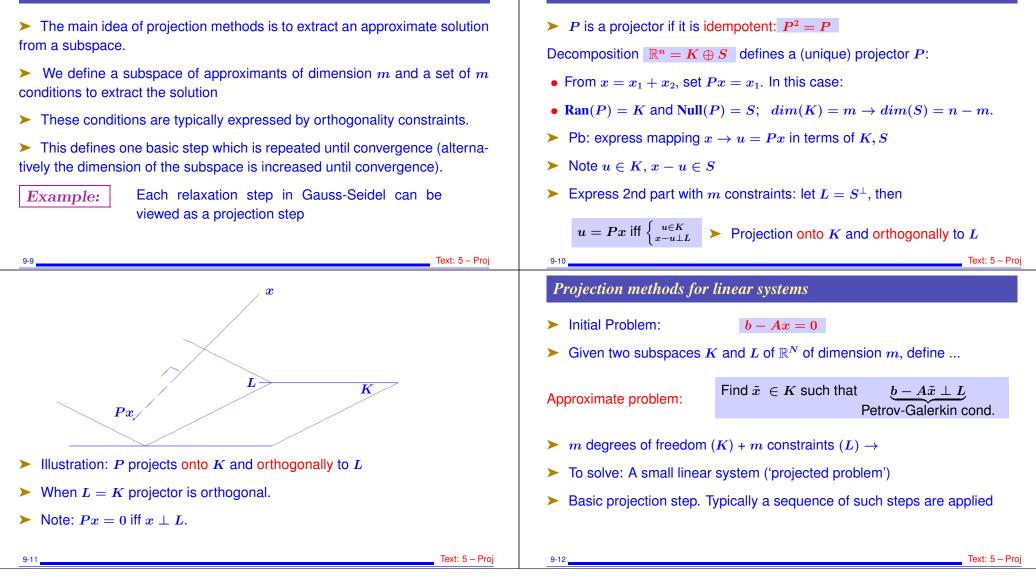
Iterative methods: relaxation techniques and projection methods	Linear Systems: Basic Relaxation Schemes
 Basic relaxation methods: Jacobi, Gauss-Seidel, SOR Convergence results Introduction to projection-type techniques Sample one-dimensional Projection methods Some theory and interpretation – See Chapter 4 and Chapter 5 of text for details. 	Relaxation schemes: based on the decomposition $A = D - E - F$ D = diag(A), -E = strict lower part of A and -F its strict upper part. $D = c = C = C = C = CD = diag(A), -E = strict lower part of A and -F its strict upper part. D = c = C = C = C = CD = diag(A), -E = strict lower part of A and -F its strict upper part. D = c = C = C = C = CD = c = C = C = C = CD = diag(A), -E = strict lower part of A and -F its strict upper part. D = c = C = C = C = CD = c = C = C = CD = c = C = C = C = CD = c = C = C = C = CD = c = C = C = C = CD = c = C = C = C = CD = $
Iteration matrices	9-2 Text: 4 – BasicIt Iteration matrices Previous methods based on splitting A as: $A = M - N$
 Jacobi, Gauss-Seidel, SOR, & x^(k+1) = Mx^(k) + f SSOR iterations are of the form M_{Jac} = D⁻¹(E + F) = I - D⁻¹A M_{GS}(A) = (D - E)⁻¹F = I - (D - E)⁻¹A SOR relaxation: ξ^(k+1) = ωξ^(GS,k+1) + (1 - ω)ξ^(k) M_{SOR}(A) = (D - ωE)⁻¹(ωF + (1 - ω)D) = I - (ω⁻¹D - E)⁻¹A Related Splitting: (D - ωE)x^(k+1) = [ωF + (1 - ω)D]x^(k) + ωb Matlab: take a look at: gs.m, sor.m, and sorRelax.m in iters/ 	$Mx = Nx + b \rightarrow Mx^{(k+1)} = Nx^{(k)} + b \rightarrow$ $x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b \equiv Gx^{(k)} + f$ Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form $G_{Jac} = D^{-1}(E + F) = I - D^{-1}A$ $G_{GS} = (D - E)^{-1}F = I - (D - E)^{-1}A$ $G_{SOR} = (D - \omega E)^{-1}(\omega F + (1 - \omega)D)$ $= I - (\omega^{-1}D - E)^{-1}A$ $G_{SSOR} = I - \omega(2 - \omega)(D - \omega F)^{-1}D(D - \omega E)^{-1}A$
9-3 Text: 4 – Basiclt	9-4 Text: 4 – BasicIt

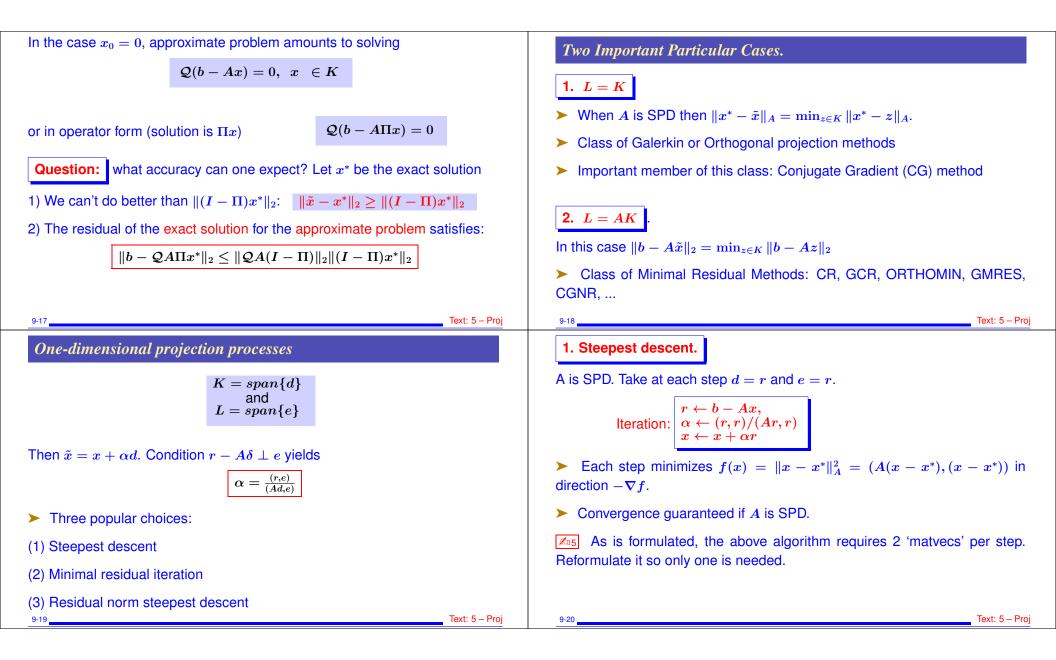
A few well-known results General convergence result > Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., $x^{(k+1)} = Gx^{(k)} + f$ Consider the iteration: matrices such that (1) Assume that $\rho(G) < 1$. Then I - G is non-singular and G has a fixed $|a_{ii}| > \sum_{i eq i} |a_{ij}|, i=1,\cdots,n$ point. Iteration converges to a fixed point for any f and $x^{(0)}$. (2) If iteration converges for any f and $x^{(0)}$ then $\rho(G) < 1$. SOR converges for $0 < \omega < 2$ for SPD matrices \succ **Example:** Richardson's iteration \blacktriangleright The optimal ω is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A. $x^{(k+1)} = x^{(k)} + lpha(b - Ax^{(k)})$ A matrix has property A if it can be \succ $PAP^{T} = egin{bmatrix} D_{1} & E \ E^{T} & D_{2} \end{bmatrix}$ (symmetrically) permuted into a 2×2 block matrix whose diagonal blocks are diagonal. Assume $\Lambda(A) \subset \mathbb{R}$. When does the iteration converge? Text: 4 - BasicIt Text: 4 - BasicIt 9-5 9-6 \succ Let A be a matrix which has property A. Then the eigenvalues λ of the An observation & Introduction to Preconditioning SOR iteration matrix and the eigenvalues μ of the Jacobi iteration matrix are related by > The iteration $x^{(k+1)} = Mx^{(k)} + f$ is attempting to solve (I - M)x = f. Since *M* is of the form $M = I - P^{-1}A$ this system can be rewritten as $(\lambda + \omega - 1)^2 = \lambda \omega^2 \mu^2$ $P^{-1}Ax = P^{-1}b$ \blacktriangleright The optimal ω for matrices with property A is given by where for SSOR, we have $\omega_{opt}=rac{2}{1+\sqrt{1ho(B)^2}}$ $P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$ where *B* is the Jacobi iteration matrix. referred to as the SSOR 'preconditioning' matrix. In other words: Relaxation Scheme \iff Preconditioned Fixed Point Iteration Text: 4 - BasicIt Text: 4 - BasicIt 9-8

Projection Methods



Background on projectors

> With a nonzero initial guess x_0 , approximate problem is		Matrix representation:	
Find $ ilde{x} \in x_0 + K$ such that $b - A ilde{x} \perp L$			
Write $ ilde{x} = x_0 + \delta$ and $r_0 = b - A x_0$. $ ightarrow$ system for δ :		Let	$ullet V = [v_1, \dots, v_m]$ a basis of K & $ullet W = [w_1, \dots, w_m]$ a basis of L
Find $\delta \in K$ such that $r_0 - A\delta \perp L$			e approximate solution as $\tilde{x} = x_0 + \delta \equiv x_0 + Vy$ where $y \in \mathbb{R}^m$. trov-Galerkin condition yields:
Formulate Gauss-Seidel as a projection method -			$W^T(r_0-AVy)=0$
Generalize Gauss-Seidel by defining subspaces consisting of '	blocks' of	► There	efore,
coordinates span $\{e_i, e_{i+1},, e_{i+p}\}$			$ ilde{x} = x_0 + V[W^TAV]^{-1}W^Tr_0$
9-13 Prototype Projection Method	Text: 5 – Proj	ture [tridi 9-14 Project	In practice $W^T A V$ is known from algorithm and has a simple struc- agonal, Hessenberg,] Text: 5 – Proj <i>Tion methods: Operator form representation</i> If = the orthogonal projector onto K and
Until Convergence Do:			blique) projector onto K and orthogonally to L .
1. Select a pair of subspaces K , and L ;		2 110 (0	
2. Choose bases: $V = [v_1, \dots, v_m]$ for K and $W = [w_1, \dots, w_m]$ for L . 3. Compute : $r \leftarrow b - Ax,$ $y \leftarrow (W^T A V)^{-1} W^T r,$ $x \leftarrow x + V y.$		$\mathcal{Q}x \in$	$ \frac{K, x - \Pi x \perp K}{K, x - Qx \perp L} $ ion: no vector of K is \perp to L
		Assumpt	IOIT. THE VECTOR OF A IS \perp IO L
9-15	Text: 5 – Proj	9-16	Text: 5 – Proj



Convergence based on the Kantorovitch inequality: Let <i>B</i> be an SPD matrix, λ_{max} , λ_{min} its largest and smallest eigenvalues. Then, $\frac{(Bx, x)(B^{-1}x, x)}{(x, x)^2} \leq \frac{(\lambda_{max} + \lambda_{min})^2}{4 \lambda_{max} \lambda_{min}}, \forall x \neq 0.$ > This helps establish the convergence result Let <i>A</i> an SPD matrix. Then, the <i>A</i> -norms of the error vectors $d_k = x_* - x_k$ generated by steepest descent satisfy: $\ d_{k+1}\ _A \leq \frac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}} \ d_k\ _A$	Proof: Observe $ d_{k+1} _A^2 = (Ad_{k+1}, d_{k+1}) = (r_{k+1}, d_{k+1})$ ► by substitution, $ d_{k+1} _A^2 = (r_{k+1}, d_k - \alpha_k r_k)$ ► By construction $r_{k+1} \perp r_k$ so we get $ d_{k+1} _A^2 = (r_{k+1}, d_k)$. Now: $ d_{k+1} _A^2 = (r_k - \alpha_k Ar_k, d_k)$ $= (r_k, A^{-1}r_k) - \alpha_k(r_k, r_k)$ $= d_k _A^2 \left(1 - \frac{(r_k, r_k)}{(r_k, Ar_k)} \times \frac{(r_k, r_k)}{(r_k, A^{-1}r_k)}\right)$. Result follows by applying the Kantorovich inequality.
> Algorithm converges for any initial guess x_0 .	
9-21 Text: 5 – Proj 2. Minimal residual iteration.	9-22 Text: 5 – Proj
 A positive definite (A + A^T is SPD). Take at each step d = r and e = Ar. Iteration: r ← b - Ax, a ← (Ar, r)/(Ar, Ar) x ← x + αr Each step minimizes f(x) = b - Ax ₂² in direction r. Converges under the condition that A + A^T is SPD. ▲ As is formulated, the above algorithm would require 2 'matvecs' at each step. Reformulate it so that only one matvec is required 	Let <i>A</i> be a real positive definite matrix, and let $\mu = \lambda_{min}(A + A^T)/2, \sigma = A _2.$ Then the residual vectors generated by the Min. Res. Algorithm satisfy: $ r_{k+1} _2 \le \left(1 - \frac{\mu^2}{\sigma^2}\right)^{1/2} r_k _2$ In this case Min. Res. converges for any initial guess x_0 .
9-23 Text: 5 – Proj	9-24 Text: 5 – Proj

