Computer Science 4271

Fall 2023

Midterm exam 1 (solutions)

October 10th, 2023

Time Limit: 75 minutes, 4:00pm-5:15pm

e Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this

page.

e This exam contains 8 pages (including this cover page) and 3 questions. Once we tell you to
start, please check that no pages are missing.

e You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

e You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

e Please read each question carefully before answering it. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking within the available time and space.

e By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 5:15pm. Good luck!

Your name (print):

Your UMN email /X.500: Qumn.edu

Number of rows ahead of you: _____ Number of seats to your left, to an aisle:

Sign and date:

Question | Points | Score

1 42
2 28
3 30

Total: 100

Computer Science 4271 Midterm exam 1 (solutions) - Page 2 of 8

1. (42 points) Stack buffer overflow and an attempted defense

Your co-worker Corrie likes programming in C, but sometimes has trouble with security, and
you’ve been called in to explain a problem that has come up. Corrie’s first mistake was writing
a function that is vulnerable to a stack buffer overflow attack. Corrie then had the idea of
blocking such attacks by keeping track of what the return address is supposed to be, and
aborting execution if it has been modified. However, this defense idea turns out to not be very
strong, because of how the code has been compiled.

Here is a cut-down version of Corrie’s function, showing just the dangerous operation and the
attempted defense:

void func(char *s, size_t sz) {
void *orig_ret = __builtin_return_address(0);
char buf[16];
memcpy (buf, s, sz);
if (__builtin_return_address(0) != orig_ret)
abort();

The argument s to the function is a pointer to some binary data, and sz is the size of that data
in bytes. The function __builtin_return_address is a GCC extension which when called
with the argument 0 evaluates to the current function’s return address, as stored on the stack.
The function abort is a standard one that immediately halts the program’s execution: if it is
called then func will never return.

Page 2

Computer Science 4271 Midterm exam 1 (solutions) - Page 3 of 8

(a) On the left below is the assembly code for the function. In the middle is a diagram showing

the stack frame used by the function, split into 8-byte boxes. Each box is labeled by its
location relative to the value of the %rbp register, specifically the value that register has
after the push %rbp instruction and before the matching pop %rbp. The final column has
letters describing different data stored in the stack frame. Fill each box in the middle
column with the letter from the right that describes its contents. Each letter should be
used at most once, except perhaps F (“unused”).

func:
push %rbp
mov %rsp, %rbp C
sub $0x20, Yrsp 0x8(%rbp)
mov hrsi, %rdx A. buf [8] through buf [15]
mov 0x8(%rbp), Y%rax E
mov Yrax, -0x8(%rbp) (%rbp) B. orig_ret variable
lea -0x20 (%rbp), %rax B
mov Y%rdi, %rsi . C. func’s return address
mov Yrax, %hrdi -0x8 (%rbp)
call memcpy F D. buf [0] through buf [7]
mov 0x8(%rbp), hrax i o
cmp %rax, -0x8(%rbp) Ox10(%erbp) E. saved %rbp
jne fail A
mov %rbp, %rsp -0x18(%rbp) F. unused
pop %rbp
ret D
fail: -0x20 (%rbp)

call abort
A lot of this layout is similar to examples we’ve seen before, and you could also work

backwards from the later attack information to guess what’s going on here. But the in-
tended/best way to figure out the layout is to look at the operations in the assembly code
and what locations they use. You should see a number of operands that look similar to labels
in the stack frame picture. The buffer buf is passed as the first argument to memcpy, so
you can find it by working backwards from the call to memcpy and seeing what’s in the first
argument register %rdi. Specifically, you can see that %rdi is copied from Yrax, and in
turn %rax is computed using lea as -0x20 (%;rbp) . (This is an lea instruction because it’s
computing the address, not loading a value from the stack.) This means that -0x20 (%rbp)
is the starting address of the array (D), and the array grows upward from there (A). It is
a standard convention that the frame pointer points at the old saved frame pointer, so E is
at (%rbp),but you can also see that by observing that the code copies the stack pointer to
%rbp right after pushing the old %rbp value. The code that pushes the return address isn’t
in this snippet (it’s the call instruction), but the ret instruction pops the return address, so
you can see that it (C) needs to be above E (pushed earlier, popped later). The two places
that access the orig ret wvariable both also access the return address, so those two values
have to be 0x8(%xrbp) and -0x8(J%rbp) in some order. The comparison is symmetric, but
the first use copies from the return address to orig_ret, so you can distinguish them based
on the order of operations. The remaining location, 0x10(%xrbp) is not accessed by any of
the code, so it gets F.

Page 3

Computer Science 4271 Midterm exam 1 (solutions) - Page 4 of 8

(b)

Corrie tested the defense by supplying the following input (shown in the syntax of a C
string; the size is 48 bytes):
AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDDEEEEEEEE\xad\x11\x40\0\0\0\0\0

Corrie observes that this replaces the function’s normal return address, 0x4012dd, with
the shellcode address 0x4011ad. But before the function jumps to the shellcode, the
comparison fails and it calls abort. To Corrie, that sounds like the defense is working.
However, there is a detail missing in the description above, which actually shows that the
defense is not working quite as intended. Explain what is happening.

Carrie is correct that the bytes \xad\x11\x40\0\0\O\O\O (@ total of 8 bytes, including
most-significant zero bytes) are overwriting the return address. But because of the stack
layout (as illustrated in the previous question), other data on the stack is also getting over-
written. In particular, the string of bytes DDDDDDDD will overwrite the location where
the orig ret wvariable is stored. In hex this is 0x4444444444444444, so it is still different
from the from the overwritten return address, and the attack is still getting detected. But
instead of comparing the overwritten return address with the correct return address, the
code is comparing it with a value controlled by the attacker.

Even more direct evidence that the defense is flawed is that one and only one of the
following inputs (same syntax and length as before) is a working attack that does cause
the shellcode to be executed. Circle the letter of the working attack.

A. AAAAAAAABBBBBBBBCCCCCCCCOx4012ddEEEEEEEEOx4011ad

(B). AAAAAAAABBBBBBBBCCCCCCCC\xad\x11\x40\0\0\0\O\OEEEEEEEE\xad\x11\x40\0\0\0\0\0
C. AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD\xad\x11\x40\0\0\0\0\0\xad\x11\x40\0\0\0\0\0
D. AAAAAAAABBBBBBBBCCCCCCCC\xad\x11\x40\0\0\0\0\0\xad\x11\x40\0\O\O\O\OFFFFFFFF
E. AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDDEEEEEEEE\xad\x11\x40\0\0\0\0\0

F. AAAAAAAABBBBBBBBCCCCCCCC\xdd\x12\x40\0\0\0O\O\OEEEEEEEE\xad\x11\x40\0\0\0\0\0

G. AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDDEEEEEEEEFFFFFFF

The way to make the attack effective is to overwrite the saved return address in orig_ret
with the same value as we’re using to overwrite the return address, so that the security
check will pass but the program will still jump to the new address. This is what the input
B does. D and C also use the same values, but they won’t work because they overwrite
the wrong locations. F has the right layout, but it overwrites the orig_ret wvariable with
the correct return address, which ensures that the security checks works correctly. FE is
the same input mentioned in the previous part, which fails as described before, and A is
similar to D but tries to overwrite addresses with ASCII hex characters, which does not
give the correct values.

Page 4

Computer Science 4271 Midterm exam 1 (solutions) - Page 5 of 8

(d) You might say that Corrie was unlucky in the decisions the compiler made. How might a
C compiler have compiled this function differently in a way that would prevent the kind
of attack we’ve described here?

The best answers we were hoping for here were decisions that a compiler makes on its own
(e.g., not directly controlled by command-line options), and which are not normally made
for security reasons but would happen to make a difference here. Two such examples would
be deciding to keep the orig_ret wvariable in a register, rather than on the stack, or putting
the stack variables in a different order, with buf’s address higher than orig ret’s, so that
a forward overflow from buf wouldn’t affect orig ret. (In fact, we encountered both of
these behaviors when trying to create this example with GCC.) We also have partial credit
for other compiler-based defenses, but these wouldn’t be as good an answer if the decision
about turning them on or off was made by the user in selecting compiler options, and
some defenses aren’t really relevant to this problem. For instance enabling ASLR doesn’t
randomize the layout of stack frames, so it wouldn’t have interfered with the overwrite.
(The question doesn’t mention how the attacker determines the shellcode address, but in
some cases ASLR would randomize it.)

Page 5

Computer Science 4271 Midterm exam 1 (solutions) - Page 6 of 8

2. (28 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) We’ve mentioned that the most commonly used no-op instruction for NOP sleds on x86-64
is the one-byte instruction 0x90. But suppose that instead you used the two-byte instruc-
tion 0x66 0x90, which also does nothing. You make a 1000 byte NOP sled consisting
of 500 copies of 0x66 0x90, followed by your normal shellcode. If an attack jumps to a
random byte offset in the NOP sled, the chances that the shellcode will execute are about:
A.0 B.25% C.33% D.50% E. 100%

A NOP sled based on a two-byte NOP instruction would always be at least 50% effective in
the metric the question asks about, because the NOP sled will definitely work as intended if
execution starts at the beginning of one of the NOP instructions. If the instruction starts
at the second byte of a two-byte NOP instruction, the byte sequence might be interpreted
differently so in general it might fail. This might be part of why D was the most common
wrong answer. However in this case we can see what will happen if execution starts at
the second byte of the 66 90 instruction, because the question reminds us that 90 is just a
one-byte NOP instruction. It will still just be a NOP instruction, and then execution will
re-align with the two-byte NOP instructions. Thus for this particular two-byte instruction,
any location will still work.

(b) Suppose that each of the values shown in hex below is multiplied by 48 (0x00000030),
using the rules of 32-bit multiplication (like an int in C). Which one overflows to give the
value 96 (0x00000060)?

A. 0x20202020 B. ox7fffffff (C. 0x10000001 D. 0x00000001 E. 0x20000002

96 is 2 times 48, which may be even easier to see in hex. So to get the low part of the
result right, we want the low part of the value we’re multiplying to also be 0x2. If it were
0x00000002, that would also produce the desired result, but it wouldn’t be an overflow.
Because 48 is a multiple of 16, multiplying by 48 effectively includes shifting left by 4 bit
positions or one hex digit, so any value in the most significant hex digit will be shifted
away. That’s why multiplying by 0x20000002 overflows to the same result as multiplying
by 0x00000002.

(¢c) Dowd et al. recommend, among other things, a series of code auditing strategies they
label DG1 through DG4. What does “DG” stand for in these names?
A. density gradient
B. Data General
C. design generalization
D. data and generation
E. defense grading

“Design generalization (DG) strategies focus on identifying logic and design vulnerabilities
by reviewing the implementation and inferring higher-level design abstractions.” (Dowd,
p. 34-85 in our PDF).

Page 6

Computer Science 4271 Midterm exam 1 (solutions) - Page 7 of 8

(d)

This printf format specifier can’t be used to modify data, but it could be used in a format
string attack to reveal information or to make the program crash (e.g. with a segfault):

A. % B.%x C.%1d D. % E. %

All five of these format specifiers can’t be used to modify data, and all five could be used to
reveal information. %x, %14, %c, and %4 all reveal data directly from the stack by treating it
like an integer-family data type. %s is a little bit different because it treats the value it reads
from the stack as a character pointer and prints the characters it points at up to a null
byte. This is a kind of revealing information that could be useful in other circumstances,
but it will also make the program crash with a segfault if the value read from the stack is
not a valid pointer.

Because you press down while writing with a pencil or pen on a pad of paper, you might
leave subtle indentations in the shape of your writing on the second page, even after you
have taken the top page you've written on away. What kind of security problem is this?
A. spoofing B. tampering C. repudiation D. information disclosure E. denial of
service

This technique gives the attacker access to information that we wanted them not to know,
so it is information disclosure.

One obvious reason not to use a pencil or another easily-erasable writing instrument for
important documents is that it would be easy for someone with momentary access to the
documents to change their contents. What kind of security problem is this?

A. spoofing B. tampering C. repudiation D. information disclosure E. denial of
service

If an attacker changes the information in a document when we would not want them to,
that is a tampering attack.

As another consequence of ease of modification, suppose you sign and date a contract in
pencil. If you later want to deny the applicability of the contract to an event on a specific
date, you might claim that you’d signed it later, and that the date had been modified.
What kind of security problem is this?

A. spoofing B. tampering C. repudiation D. information disclosure E. denial of
service

An attacker later denying an action they took or commitment they made in the past is
repudiation.

Page 7

Computer Science 4271 Midterm exam 1 (solutions) - Page 8 of 8

3. (30 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-

sponding answer. Each answer is used exactly once.

(a) ——B__ Another phrase describing code auditing

(b) —_M__ Modeled as the product of the loss from an event times its probability

(¢) ——G_ Code that executes the same at any memory address
(d) —_L__ Filling stack space with no-op ROP gadgets
(e) __C__ Starting point for back tracing in code auditing
(f) ——J_ The register used for the first function argument on x86-64
(g) —_K__ Modifying code to run at a different address
(h) —_F_ A C function similar to goto across functions
N__ The register pointing to the lowest-addressed stack location
(j) —A__ A fuzzing tool named after a breed of rabbits
H__ Position-independence applied to the main program
(1) —_I__ The “frame pointer” to the high end of a stack frame
(m) —_D__ Components that record information without initiating actions
(n) _E__ Gaining the ability to do things you shouldn’t be able to

(0) ——O_ When a C compiler can make your program do anything

A. AFL B. application review C. candidate point D. data store
of privilege F. longjmp G. PIC H. PIE I. %rbp J. hrdi
L. ret2pop M. risk N. %rsp O. undefined behavior

Page 8

E. elevation
K. relocation

