CSci 427\W
Development of Secure Software Systems
Day 10: Unix Access Control

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Access control: mechanism and policy

Configurability

©) Basic idea: let one mechanism (implementation)
support a variety of security policies

©) Le, make security a system configuration

) Classic example for today: OS access control

) Flexible mechanism to support different policies

) Trade-off: an incorrect configuration can lead to
insecurity

Confidentiality and integrity

£) Access control directly serves two security goals:
£) Confidentiality, opposite of information disclosure
©) Integrity, opposite of tampering

£) By prohibiting read and write operations respectively

Access control policy

) Decision-making aspect of 0OS

©) Should subject S (user or process) be allowed to
access object (e.q, file) O?

©) Complex, since admininstrator must specify what
should happen

Access control matrix

Slicing the matrix

) O(nm) matrix impractical to store, much less
administer
£) Columns: access control list (ACL)
® Convenient to store with object
® Eg, Unix file permissions
©) Rows: capabilities
® Convenient to store by subject
® Eg, Unix file descriptors

grades.txt | /dev/hda | /usr/bin/bevi
Alice r ™w rx
Bob w - rx
Carol r - rx
Groups/roles

©) Simplify by factoring out commonality

£) Before: users have permissions

£) After: users have roles, roles have permissions

£) Simple example: Unix groups

£) Complex versions called role-based access control
(RBAC)

Outline

Unix filesystem concepts

One namespace

£ All files can be accessed via absolute pathnames
made of directory components separated by slashes

£ le, everything is a descendant of a root directory
named /

Filesystems and mounting

©) There may be multiple filesystems, like disk partitions
or removable devices

©) One filesystem is the root filesystem that includes
the root directory
) Other filesystems are mounted in place of a
directory
® Eg, /media/smccaman/mp3player/podcast .mp3

Special files and devices

£) Some hardware devices (disks, serial ports) also
look like files
® Usually kept under /dev
£) Some special data sources look like devices
® /dev/null, /dev/zero, /dev/urandom
£) Some OS data also available via /proc and sys
filesystems
mEg, /proc/self/maps

Current directory, relative paths

©) At a given moment, each process has a current
working directory
® Changed by cd shell command, chdir system call
£) Pathnames that do not start with / are interpreted
relative to the current directory

Inodes

) Most information about a file is a structure called an
inode

£ Includes size, owner, permissions, and a unique inode
number

£) Inodes exist independently of pathnames

Directory entries and links

©) A directory is a list of directory entries, each
mapping from a name to an inode

£) These mappings are also called links

) "Deleting a file” is really removing a directory entry
® The system call unlink

Entries . and ..

) Every directory contains entries named . and ..
£ . links back to the directory itself

£ .. links back to the parent directory, or itself for the
root

(Hard) links

©) Multiple directory entries can link to the same inode
£) These are called hard links

£) Only allowed within one filesystem, and not for
directories

Symbolic links

£) Symbolic links are a different linking method
£) A symbolic link is an inode that contains a pathname

£) Most system calls follow symbolic as well as hard
links to operate on they point to

Outline

Announcements intermission

Midterm-related resources

©) Four solution set PDFs from old exams are now
posted

£) Bring your questions (including lab and pset-related)
to office hours or Piazza

Midterm-related advice

) Pencil or erasable pen would be good writing
implements (unless you don't make mistakes)

£) You can bring any paper, but distiling the most
useful information will save you time

) Several previous exams had questions related to
terminology: this can benefit from targeted studying

Outline

Unix permissions basics

UIDs and GIDs

©) To kernel, users and groups are just numeric
identifiers
£) Names are a user-space nicety
s Eg, /etc/passwd mapping
) Historically 16-bit, now 32
£) User O is the special superuser root
® Exempt from all access control checks

File mode bits

£) Core permissions are 9 bits, three groups of three
©) Read, write, execute for user, group, other

£ 1s format: rwx r-x r—-

£) Octal format: 0754

Interpretation of mode bits

) File also has one user and group ID

£) Choose one set of bits

® If users match, use user bits
® If subject is in the group, use group bits
® Otherwise, use other bits

©) Note no fallback, so can stop yourself or have
negative groups

Directory mode bits

£) Same bits, slightly different interpretation

©) Read: list contents (e.qg, 1s)

£) Write: add or delete files

©) Execute: traverse

£ X but not R means: have to know the names

Other permission rules

£) Only file owner or root can change permissions
©) Only root can change file owner
® Former System V behavior: “give away chown”

©) Setuid/qgid bits cleared on chown
® Set owner first, then enable setuid

Non-checks

) File permissions on stat
£ File permissions on link, unlink, rename
£ File permissions on read, write

©) Parent directory permissions generally

® Except traversal
® le, permissions not automatically recursive

Outline

Exercise: using Unix permissions

Octal digits represent access

07 =rwx
06=rw
05=rx
04-=r

£ 0 = no access

Setting: files related to this class

©) Student and course staff materials

©) Imagine everything is in Unix files on CSE Labs

® Versus reality of a mixture of Unix with web-based
systems like Canvas

Users and groups

) Users: smccaman (instructor), wang8330 (TA),
stude003 (student)

£) Groups: cscid271staff (instructor and TAs),
csci4271students, csci4271all (staff and students)

What | want from you

©) Brainstorm sets of octal permissions bits that could
be used

£) For each permission bits set, give user, owner, and
file/directory contents/use that would be sensible

Outline

More Unix permissions

Process UIDs and setuid(2)

o) UD is inherited by child processes, and an
unprivileged process can't change it

£) But there are syscalls root can use to change the
UID, starting with setuid

©) Eg, login program, SSH server

Setuid programs, different UIDs

£) If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
£) Specifically the effective UID is changed, while the
real UID is unchanged
® Shows who called you, allows switching back

More different UIDs

£) Two mechanisms for temporary switching:

® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)

©) Modern systems support both mechanisms at the
same time

Setgid, games

£) Setgid bit 02000 mostly analogous to setuid

£) But note no supergroup, so UID O is still special

©) Classic application: setgid games for managing
high-score files

Special case: /tmp

©) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

£) Solution: “sticky bit” 01000

Special case: group inheritance

) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent’s group
® (Historic BSD behavior)

£) Also, directories will themselves inherit 02000

Other permission rules

©) Only file owner or root can change permissions
©) Only root can change file owner

® Former System V behavior: “give away chown”
©) Setuid/qgid bits cleared on chown

® Set owner first, then enable setuid

