
CSci 4271W
Development of Secure Software Systems

Day 12: Ethics and law in security
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Ethics and security

Announcements intermission

Good technical writing

Legal context for security

More Unix permissions

Don’t be evil

Broadly, ethics are principles for distinguishing good
from bad actions
Most people try to be good most of the time

But there are hard cases

Topics important enough for security are usually also
important for ethics

But adversaries often arise from ethical disagreement

Principles and consequences

Ethical reasoning tends to be a mix of:

Principles for categorizing actions as good or bad
Religions and laws provide many examples

Attention to the consequences of actions
E.g., actions are evil because of their negative effects

Another meta-principle: people’s ethical intuitions
vary

Ethics and laws

The legal system is a primary way societies enforce
ethical guidelines

But the law is an imperfect consensus approximation of
ethics

Following the law and being ethical can be separate
constraints

You should try to satisfy both

Beyond white and black hats

In describing techniques, we posit a clear distinction
of attackers and defenders

But in real scenarios, you can’t assume that attacker
= bad and defender = good

What follows are some specific situations showing
more complexity

Ethics of security research

Why do good people research (and teach) about
attack techniques?

1. In order to effectively defend, you have to be able to
anticipate attacker strategies

2. In some cases, attacks may be ethically justified

Common example: finding vulnerabilities so they can
be fixed

Responsible disclosure

If you find a vulnerability in software, who should you
tell about it? Two extremes:

Only the author/vendor ever needs to know
Make the information fully public right away (full disclosure)

Security researchers often push on vendors for
more and faster disclosure
A common compromise is to give vendors a head
start, but with a deadline

E.g., Google uses 90 days (or 7 days if being used)



Nation states

Many governments would argue they need to break
the security of criminals or foreign spies

“justice”, “public safety”, “national security”, etc.

“Cyber-warfare” has both offensive and defensive
aspects

Compare with various ethical perspectives on killing in war

Interoperability and repair

Vendors of devices can have economic desires to
control how the devices interact with other devices
or can be repaired

Classic example: expensive proprietary ink cartridges

If vendors use security and cryptography techniques
to implement these restrictions, is it ethical to attack
them?

Copy protection and DRM
Vendors of software and media would prefer you
can’t make copies to give to your friends

Many generations of attempts to implement such
restrictions
Fundamentally hard, because the data must be decoded
to be used
Keeping software from being reverse engineered is also
hard

Do the ethics depend on how competent the
technique is?

Malware analysis

Labeling software as malicious is defining it to be the
evil side

E.g., viruses, botnet clients

Leads to many software security concerns being
inverted

Preventing reverse engineering is a common goal of
DRM software and malware

Outline

Ethics and security

Announcements intermission

Good technical writing

Legal context for security

More Unix permissions

Project-related reminders

Project 0.5 regular due date is 11:59pm tomorrow

Individual reports, submit as PDF on Canvas

One-time extension changes the due date to
11:59pm on Monday

But also weigh saving it for one two more project
deadlines
Extension implemented as “late submission” on Canvas

Outline

Ethics and security

Announcements intermission

Good technical writing

Legal context for security

More Unix permissions

Writing in CS versus other writing

Key goal is accurately conveying precise technical
information

More important: careful use of terminology,
structured organization

Less important: writer’s personality, persuasion,
appeals to emotion



Still important: concise expression

Don’t use long words or complicated expressions
when simpler ones would convey the same meaning.
Negative examples:

necessitate
utilize
due to the fact that

Beneficial for both clarity and style

Know your audience: terminology

When technical terminology makes your point clearly,
use it
Provide definitions if a concept might be new to
many readers

Be careful to provide the right information in the definition
Define at the first instead of a later use

But, avoid introducing too many new terms
Keep the same term when referring to the same concept

Precise explanations

Don’t say “we” do something when it’s the computer
that does it

And avoid passive constructions

Don’t anthropomorphize (computers don’t “know”)

Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

Use plenty of sections and sub-sections

It’s OK to have some redundancy in previewing
structure
Limit each paragraph to one concept, and not too
long

Start with a clear topic sentence

Split long, complex sentences into separate ones

Know your audience: Project 0.5

For projects in this course, assume your audience is
another student who already understands general
course concepts

Up to the current point in the course
I.e., don’t need to define “buffer overflow” from scratch

But you need to explain specifics of a vulnerable
program

Make clear what part of the program you’re referring to
Explain all the specific details of a vulnerability

Inclusive language

Avoid words and grammar that implies relevant
people are male

My opinion: avoid using he/him pronouns for
unknown people
Some possible alternatives

“he/she”
Alternating genders
Rewrite to plural and use “they” (may be less clear)
Singular “they” (least traditional, but spreading)

Outline

Ethics and security

Announcements intermission

Good technical writing

Legal context for security

More Unix permissions

Mostly US federal law

In the US, federal law is most important in computing
State laws are hard to enforce across the Internet

Other countries have their own laws that differ in
details

Treaties and international effects are sometimes also
important



Benefits and costs of law/regulation

+ Enforce ethical norms on otherwise reluctant parties
Especially: criminals, large corporations

- Interested parties lobby for laws favorable to them

- Laws can easily fall behind technology development

- Extra costs of complying with laws

Intellectual property

Patents: useful inventions, �20 years

Copyrights: fixed expressions, �100 years

Trademarks: business identifiers, unlimited

Trade secrets: supplementing contracts, unlimited

Privacy?

No law provides general protection of personal
privacy

Gap partially filled by agency regulation

Two major industries have specific laws:
FERPA in education
HIPAA in health care (the P doesn’t stand for privacy)

CFAA

Computer Fraud and Abuse Act of 1986

Civil and criminal liability for “unauthorized access” to
a computer

Gradually extended to cover any computer, and
many related activities
Potentially applied to any contract or
terms-of-service violation

Not always successfully

Example: Randal Schwartz

Schwartz worked as a contract sysadmin several
Intel divisions

He ran a password cracking program and moved
password files between machines in a division he no
longer worked for
He was convicted of three felonies under an Oregon
state law

Similar to the CFAA, somewhat more vague

DMCA

Digital Millennium Copyright Act of 1998

Legally reinforces DRM by criminalizing
“circumvention” and tools that perform it
But, can violate without violating copyright

App stores, video game bots, garage door openers

A narrow exemptions process is growing in
application

Example: Sony BMG “rootkit”

In 2005, sold CDs with software that modified a
Windows or Mac OS to interfere with copying
To prevent removal, the software used techniques
usually used by malicious software

A “rootkit” is backdoor software installed on a
compromised machine
Common techniques include hiding files and processes

Led to a recall, class action suits, FTC settlement,
etc.

Outline

Ethics and security

Announcements intermission

Good technical writing

Legal context for security

More Unix permissions



Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000


