
CSci 4271W
Development of Secure Software Systems

Day 13: More Permissions, and OS-level Injection Threats
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Legal context for security, cont’d

More Unix permissions

Announcements intermission

Shell code injection and related threats

Intellectual property

Patents: useful inventions, �20 years

Copyrights: fixed expressions, �100 years

Trademarks: business identifiers, unlimited

Trade secrets: supplementing contracts, unlimited

Privacy?

No law provides general protection of personal
privacy

Gap partially filled by agency regulation

Two major industries have specific laws:
FERPA in education
HIPAA in health care (the P doesn’t stand for privacy)

CFAA

Computer Fraud and Abuse Act of 1986

Civil and criminal liability for “unauthorized access” to
a computer

Gradually extended to cover any computer, and
many related activities
Potentially applied to any contract or
terms-of-service violation

Not always successfully

Example: Randal Schwartz

Schwartz worked as a contract sysadmin several
Intel divisions

He ran a password cracking program and moved
password files between machines in a division he no
longer worked for
He was convicted of three felonies under an Oregon
state law

Similar to the CFAA, somewhat more vague

DMCA

Digital Millennium Copyright Act of 1998

Legally reinforces DRM by criminalizing
“circumvention” and tools that perform it
But, can violate without violating copyright

App stores, video game bots, garage door openers

A narrow exemptions process is growing in
application

Example: Sony BMG “rootkit”

In 2005, sold CDs with software that modified a
Windows or Mac OS to interfere with copying
To prevent removal, the software used techniques
usually used by malicious software

A “rootkit” is backdoor software installed on a
compromised machine
Common techniques include hiding files and processes

Led to a recall, class action suits, FTC settlement,
etc.

Outline

Legal context for security, cont’d

More Unix permissions

Announcements intermission

Shell code injection and related threats

Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000

Outline

Legal context for security, cont’d

More Unix permissions

Announcements intermission

Shell code injection and related threats

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

Legal context for security, cont’d

More Unix permissions

Announcements intermission

Shell code injection and related threats

Two kinds of privilege escalation

Local exploit: give higher privilege to a regular user
E.g., caused by bug in setuid program or OS kernel

Remote exploit: give access to an external user
who doesn’t even have an account

E.g., caused by bug in network-facing server or client

Shell code injection

The command shell is convenient to use, especially
in scripts

In C: system, popen

But it is bad to expose the shell’s power to an
attacker

Key pitfall: assembling shell commands as strings

Note: different from binary “shellcode”

Shell code injection example

Benign: system("cp $arg1 $arg2"), arg1 =
"file1.txt"

Attack: arg1 = "a b; echo Gotcha"

Command: "cp a b; echo Gotcha file2.txt"

Not a complete solution: prohibit ‘;’

The structure problem

What went wrong here?

Basic mistake: assuming string concatenation will
respect language grammar

E.g., that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

Avoid letting untrusted data get near a shell

For instance, call external programs with lower-level
interfaces

E.g., fork and exec instead of system

May constitute a security/flexibility trade-off

Less reliable: text processing

Allow-list: known-good characters are allowed,
others prohibited

E.g., username consists only of letters
Safest, but potential functionality cost

Deny-list: known-bad characters are prohibited,
others allowed

Easy to miss some bad scenarios

“Sanitization”: transform bad characters into good
Same problem as deny-list, plus extra complexity

Terminology note

Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

These terms have been criticized for a problematic
“white=good”, “black=bad” association

The push to avoid the terms got significant additional
attention in summer 2020, but is still somewhat
political and in flux

Different shells and multiple interpretation

Complex Unix systems include shells at multiple
levels, making these issues more complex

Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

Other shell-like programs also have caveats with
levels of interpretation

Tcl before version 9 interpreted leading zeros as octal

Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem
In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

In modern shells, improved by not taking from
environment

