
CSci 4271W
Development of Secure Software Systems

Day 14: OS Attacks and Protection
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Secure OS interaction

OS: protection and isolation

Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem
In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

In modern shells, improved by not taking from
environment

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Secure OS interaction

OS: protection and isolation

Bad/missing error handling

Under what circumstances could each system call
fail?

Careful about rolling back after an error in the middle
of a complex operation

Fail to drop privileges) run untrusted code anyway

Update file when disk full) truncate

Race conditions

Two actions in parallel; result depends on which
happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger requirement

Unsafe design (mktemp(3)): function to return
unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between steps 1 and 2

Just get lucky, or use tricks to slow you down

Read It Twice (WOOT’12)

Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

Malicious USB device replaces app between steps

TV “rooted”/“jailbroken”

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Directory traversal with ..

Program argument specifies file, found in directory
files

What about files/../../../../etc/passwd?

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Secure OS interaction

OS: protection and isolation

First reading assignment posted

The external reading on today’s topics is chapters
from a web-hosted book by David A. Wheeler

5 multiple-choice reading questions are a repeatable
auto-graded Canvas quiz, due by Thursday after
break, 3/14.

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Secure OS interaction

OS: protection and isolation

Avoid special privileges

Require users to have appropriate permissions
Rather than putting trust in programs

Dangerous pattern 1: setuid/setgid program

Dangerous pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

Prefer file descriptors

Maintain references to files by keeping them open
and using file descriptors, rather than by name

References same contents despite file system
changes

Use openat, etc., variants to use FD instead of
directory paths

Prefer absolute paths

Use full paths (starting with /) for programs and files

$PATH under local user control

Initial working directory under local user control
But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

Each directory component in a path must be write
protected

Read-only file in read-only directory can be changed
if a parent directory is modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight permissions and
never reopen them

See detailed recommendations in Wheeler (q.v.)

Not quite good enough: reopen and check matching
device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Secure OS interaction

OS: protection and isolation

OS security topics

Resource protection

Process isolation

User authentication (will cover later)

Access control (already covered)

Protection and isolation

Resource protection: prevent processes from
accessing hardware

Process isolation: prevent processes from interfering
with each other

Design: by default processes can do neither

Must request access from operating system

Reference monitor

Complete mediation: all accesses are checked

Tamperproof: the monitor is itself protected from
modification

Small enough to be thoroughly verified

Hardware basis: memory protection

Historic: segments

Modern: paging and page protection
Memory divided into pages (e.g. 4k)
Every process has own virtual to physical page table
Pages also have R/W/X permissions

Linux example

Hardware basis: supervisor bit

Supervisor (kernel) mode: all instructions available

User mode: no hardware or VM control instructions

Only way to switch to kernel mode is specified entry
point

Also generalizes to multiple “rings”

