CSci 4271W Development of Secure Software Systems Day 18: Web Security 2

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks Crypto basics

- Put this on something the user will be tempted to click on
- There are more than 100 handlers like this recognized by various browsers

Outline

Cross-site scripting, cont'd

- More cross-site risks
- Announcements intermission
- Confidentiality and privacy

Even more web risks

Crypto basics

Content sniffing

- Browsers determine file type from headers, extension, and content-based guessing

 Latter two for ~ 1% server errors

 Many sites host "untrusted" images and media
- Inconsistencies in guessing lead to a kind of XSS E.g., "chimera" PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to wire money
 Link or script on evil.com loads it with certain parameters

 Linking is exception to same-origin

If I'm logged in, money sent automatically

CSRF prevention

- Give site's forms random-nonce tokens
 E.g., in POST hidden fields
 Not in a cookie, that's the whole point
 Reject requests without proper token
 - Or, ask user to re-authenticate
- XSS can be used to steal CSRF tokens

Open redirects Common for one page to redirect clients to another Target should be validated With authentication check if appropriate Open redirect: target supplied in parameter with no checks Doesn't directly hurt the hosting site But reputation risk, say if used in phishing We teach users to trust by site

Outline

Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks Crypto basics

Web security reading

- The OWASP Top Ten is a web page enumerating the most important web security threats, with advice about what to do about them
- Reading quiz will be due a week from today, Thursday the 28th

Outline

Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks Crypto basics

Server-side encryption

- Also consider encrypting data "at rest"
- (Or, avoid storing it at all)
- Provides defense in depth

Reduce damage after another attack

- May be hard to truly separate keys
 - \blacksquare OWASP example: public key for website \rightarrow backend credit card info

Adjusting client behavior

Consider disabling autocomplete

- Usability tradeoff, save users from themselves
 Finally standardized in HTML5
- Consider disabling caching
 - Performance tradeoff
 - Better not to have this on user's disk
 - Or proxy? You need SSL/TLS

History stealing

- History of what sites you've visited is not supposed to be JS-visible
- But, many side-channel attacks have been possible
 - Query link color
 - CSS style with external image for visited links
 - Slow-rendering timing channel
 - Harvesting bitmaps
 - User perception (e.g. fake CAPTCHA)

Browser and extension choices

- More aggressive privacy behavior lives in extensions
 - Disabling most JavaScript (NoScript)
 - HTTPS Everywhere (centralized list)
 - Tor Browser Bundle

Default behavior is much more controversial

Concern not to kill advertising support as an economic model

Stay up to date on security announcements

Crawling and scraping

- A lot of web content is free-of-charge, but proprietary
 - Yours in a certain context, if you view ads, etc.
- Sites don't want it downloaded automatically (web crawling)
- Or parsed and user for another purpose (screen scraping)
- High-rate or honest access detectable

Outline

Cross-site scripting, cont'd

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics

-ography, -ology, -analysis

- Cryptography (narrow sense): designing encryption
- Cryptanalysis: breaking encryption
- Cryptology: both of the above
- Code (narrow sense): word-for-concept substitution
- Cipher: the "codes" we actually care about

Caesar cipher

- **O** Advance three letters in alphabet: $A \rightarrow D, B \rightarrow E, \dots$
- Decrypt by going back three letters
- 🖲 Internet-era variant: rot-13
- Easy to break if you know the principle

Keys and Kerckhoffs's principle

- Security does not depend on anything else being secret
- Modern (esp. civilian, academic) crypto embraces openness quite strongly

Symmetric vs. public key Symmetric key (today's lecture): one key used by all participants Public key: one key kept secret, another published Techniques invented in 1970s Makes key distribution easier Depends on fancier math

Computational security

- More realistic: assume adversary has a limit on computing power
- Secure if breaking encryption is computationally infeasible
 - E.g., exponential-time brute-force search
- Ties cryptography to complexity theory

Key sizes and security levels

- Difficulty measured in powers of two, ignore small constant factors
- Power of attack measured by number of steps, aim for better than brute force
- 2³² definitely too easy, probably 2⁶⁴ too
- Modern symmetric key size: at least 2¹²⁸

Crypto primitives

- Base complicated systems on a minimal number of simple operations
- Designed to be fast, secure in wide variety of uses
- Study those primitives very intensely

Attacks on encryption

- Known ciphertext
 - Weakest attack
- Known plaintext (and corresponding ciphertext)
- 🖲 Chosen plaintext
- Chosen ciphertext (and plaintext)
 - Strongest version: adaptive

Certificational attacks

- Good primitive claims no attack more effective than brute force
- Any break is news, even if it's not yet practical Canary in the coal mine
- 🖪 E.g., 2^{126.1} attack against AES-128
- Also watched: attacks against simplified variants

Fundamental ignorance

- We don't really know that any computational cryptosystem is secure
- Security proof would be tantamount to proving $P \neq NP$
- Crypto is fundamentally more uncertain than other parts of security

Random oracle paradigm

Assume ideal model of primitives: functions selected uniformly from a large space Anderson: elves in boxes

- Not theoretically sound; assumption cannot be satisfied
- But seems to be safe in practice

Pseudorandomness and distinguishers

Claim: primitive cannot be distinguished from a truly random counterpart

In polynomial time with non-negligible probability

- We can build a distinguisher algorithm to exploit any weakness
- Slightly too strong for most practical primitives, but a good goal

Open standards

- How can we get good primitives?
- Open-world best practice: run competition, invite experts to propose then attack
- Run by neutral experts, e.g. US NIST
- Recent good examples: AES, SHA-3

A certain three-letter agency

- National Security Agency (NSA): has primary responsibility for "signals intelligence"
- 🖲 Dual-mission tension:
 - Break the encryption of everyone in the world
 - Help US encryption not be broken by foreign powers