
CSci 4271W
Development of Secure Software Systems

Day 20: Cryptography part 2, more symmetric key
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Block ciphers and modes of operation

Announcements intermission

Hash functions and MACs

Building a secure channel

Basic idea

Encryption/decryption for a fixed sized block

Insecure if block size is too small
Barely enough: 64 bits; current standard: 128

Reversible, so must be one-to-one and onto function

Pseudorandom permutation

Ideal model: key selects a random invertible function

I.e., permutation (PRP) on block space
Note: not permutation on bits

“Strong” PRP: distinguisher can decrypt as well as
encrypt

Confusion and diffusion

Basic design principles articulated by Shannon

Confusion: combine elements so none can be
analyzed individually

Diffusion: spread the effect of one symbol around to
others

Iterate multiple rounds of transformation

Substitution/permutation network

Parallel structure combining reversible elements:

Substitution: invertible lookup table (“S-box”)

Permutation: shuffle bits

AES

Advanced Encryption Standard: NIST contest 2001
Developed under the name Rijndael

128-bit block, 128/192/256-bit key

Fast software implementation with lookup tables (or
dedicated insns)

Allowed by US government up to Top Secret

Feistel cipher

Split block in half, operate in turn:
(Li+1; Ri+1) = (Ri; Li � F(Ri; Ki))

Key advantage: F need not be invertible
Also saves space in hardware

Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

Data Encryption Standard: AES predecessor
1977-2005

64-bit block, 56-bit key

Implementable in 70s hardware, not terribly fast in
software

Triple DES variant still used in places

Some DES history

Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
Final spec helped and “helped” by the NSA

Argued for smaller key size
S-boxes tweaked to avoid a then-secret attack

Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware

1993 est. $1m cost custom hardware

1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

Combine two different block ciphers?
Belt and suspenders

Anderson: don’t do it

FS&K: could do it, not a recommendation

Maurer and Massey (J.Crypt’93): might only be as
strong as first cipher

Modes of operation

How to build a cipher for arbitrary-length data from a
block cipher
Many approaches considered

For some reason, most have three-letter acronyms

More recently: properties susceptible to relative
proof

ECB

Electronic CodeBook

Split into blocks, apply cipher to each one individually

Leaks equalities between plaintext blocks

Almost never suitable for general use

Do not use ECB CBC

Cipher Block Chaining

Ci = EK(Pi � Ci-1)

Long-time most popular approach, starting to decline

Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

C0 is called the initialization vector (IV)
Must be known for decryption

IV should be random-looking
To prevent first-block equalities from leaking (lesser
version of ECB problem)

Common approaches
Generate at random
Encrypt a nonce

Stream modes: OFB, CTR

Output FeedBack: produce keystream by repeatedly
encrypting the IV

Danger: collisions lead to repeated keystream

Counter: produce from encryptions of an
incrementing value

Recently becoming more popular: allows parallelization
and random access

Outline

Block ciphers and modes of operation

Announcements intermission

Hash functions and MACs

Building a secure channel

Deadline related announcements

Project 1 Canvas assignment is now open for
submissions

Extensions implemented as “late”, check if you plan to
use yours

The deadline for the OWASP reading quiz is tonight

Outline

Block ciphers and modes of operation

Announcements intermission

Hash functions and MACs

Building a secure channel

Ideal model

Ideal crypto hash function: pseudorandom function
Arbitrary input, fixed-size output

Simplest kind of elf in box, theoretically very
convenient

But large gap with real systems: common practice is
to target particular properties

Kinds of attacks

Pre-image, “inversion”: given y, find x such that
H(x) = y

Second preimage, targeted collision: given x, H(x),
find x 0 6= x such that H(x 0) = H(x)

(Free) collision: find x1, x2 such that H(x1) = H(x2)

Birthday paradox and attack

There are almost certainly two people in this class
with the same birthday

n people have
�
n
2

�
= �(n2) pairs

So only about
p
n expected for collision

“Birthday attack” finds collisions in any function

Security levels

For function with k-bit output:

Preimage and second preimage should have
complexity 2k

Collision has complexity 2k=2

Conservative: use hash function twice as big as
block cipher key

Though if you’re paranoid, cipher blocks can repeat too

Non-cryptographic hash functions

The ones you probably use for hash tables

CRCs, checksums

Output too small, but also not resistant to attack

E.g., CRC is linear and algebraically nice

Short hash function history

On the way out: MD5 (128 bit)
Flaws known, collision-finding now routine

SHA(-0): first from NIST/NSA, quickly withdrawn
Likely flaw discovered 3 years later

SHA-1: fixed SHA-0, 160-bit output.

260 collision attack described in 2013
First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem

MD5, SHA1, etc., computed left to right over blocks

Can sometimes compute H(a k b) in terms of
H(a)

k means bit string concatenation

Makes many PRF-style constructions insecure

SHA-2 and SHA-3

SHA-2: evolutionary, larger, improvement of SHA-1
Exists as SHA-f224; 256; 384; 512g
But still has length-extension problem

SHA-3: chosen recently in open competition like AES
Formerly known as Keccak, official standard Aug. 2015
New design, fixes length extension
Adoption has been gradual

MAC: basic idea

Message authentication code: similar to hash
function, but with a key

Adversary without key cannot forge MACs

Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

Same process as CBC encryption, but:
Start with IV of 0
Return only the last ciphertext block

Both these conditions needed for security

For fixed-length messages (only), as secure as the
block cipher

HMAC construction

H(K kM): insecure due to length extension
Still not recommended: H(M k K), H(K k M k K)

HMAC: H(K� a k H(K� b kM))

Standard a = 0x5c
�, b = 0x36

�

Probably the most widely used MAC

Outline

Block ciphers and modes of operation

Announcements intermission

Hash functions and MACs

Building a secure channel

Session keys

Don’t use your long term password, etc., directly as
a key

Instead, session key used for just one channel

In modern practice, usually obtained with public-key
crypto

Separate keys for encryption and MACing

Order of operations

Encrypt and MAC (“in parallel”)
Safe only under extra assumptions on the MAC

Encrypt then MAC
Has cleanest formal safety proof

MAC then Encrypt
Preferred by FS&K for some practical reasons
Can also be secure

Authenticated encryption modes

Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
“Authenticated encryption” modes do both at once

Newer (circa 2000) innovation, many variants

NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

Also don’t want attacker to be able to replay or
reorder messages

Simple approach: prefix each message with counter

Discard duplicate/out-of-order messages

Padding

Adjust message size to match multiple of block size

To be reversible, must sometimes make message
longer

E.g.: for 16-byte block, append either 1, or 2 2, or
3 3 3, up to 16 “16” bytes

Padding oracle attack

Have to be careful that decoding of padding does
not leak information

E.g., spend same amount of time MACing and
checking padding whether or not padding is right

Remote timing attack against CBC TLS published
2013

Don’t actually reinvent the wheel

This is all implemented carefully in OpenSSL, SSH,
etc.

Good to understand it, but rarely sensible to
reimplement it

You’ll probably miss at least one of decades’ worth
of attacks

Next time

Public-key encryption protocols

More about provable security and appropriate
paranoia

