Outline

- Block ciphers and modes of operation
- Announcements intermission
- Hash functions and MACs
- Building a secure channel

Basic idea

- Encryption/decryption for a fixed sized block
- Insecure if block size is too small
 - Barely enough: 64 bits; current standard: 128
- Reversible, so must be one-to-one and onto function

Pseudorandom permutation

- Ideal model: key selects a random invertible function
 - I.e., permutation (PRP) on block space
 - Note: not permutation on bits
- "Strong" PRP: distinguisher can decrypt as well as encrypt

Confusion and diffusion

- Basic design principles articulated by Shannon
- Confusion: combine elements so none can be analyzed individually
- Diffusion: spread the effect of one symbol around to others
- Iterate multiple rounds of transformation

Substitution/permutation network

- Parallel structure combining reversible elements:
 - Substitution: invertible lookup table ("S-box")
 - Permutation: shuffle bits

AES

- Advanced Encryption Standard: NIST contest 2001
 - Developed under the name Rijndael
- 128-bit block, 128/192/256-bit key
- Fast software implementation with lookup tables (or dedicated insns)
- Allowed by US government up to Top Secret

Feistel cipher

- Split block in half, operate in turn:
 \((L_{i+1}, R_{i+1}) = (R_i, L_i \oplus F(R_i, K_i))\)
- Key advantage: \(F\) need not be invertible
 - Also saves space in hardware
- Luby-Rackoff: if \(F\) is pseudo-random, 4 or more rounds gives a strong PRP
DES
- Data Encryption Standard: AES predecessor
 - 1977-2005
- 64-bit block, 56-bit key
- Implementable in 70s hardware, not terribly fast in software
- Triple DES variant still used in places

Some DES history
- Developed primarily at IBM, based on an earlier cipher named “Lucifer”
- Final spec helped and “helped” by the NSA
 - Argued for smaller key size
 - S-boxes tweaked to avoid a then-secret attack
- Eventually victim to brute-force attack

DES brute force history
- 1977 est. $20m cost custom hardware
- 1993 est. $1m cost custom hardware
- 1997 distributed software break
- 1998 $250k built ASIC hardware
- 2006 $10k FPGAs
- 2012 as-a-service against MS-CHAPv2

Double encryption?
- Combine two different block ciphers?
 - Belt and suspenders
 - Anderson: don’t do it
 - FS&K: could do it, not a recommendation
 - Maurer and Massey (J.Crypt’93): might only be as strong as first cipher

Modes of operation
- How to build a cipher for arbitrary-length data from a block cipher
- Many approaches considered
 - For some reason, most have three-letter acronyms
 - More recently: properties susceptible to relative proof

ECB
- Electronic CodeBook
- Split into blocks, apply cipher to each one individually
-Leaks equalities between plaintext blocks
-Almost never suitable for general use

Do not use ECB

CBC
- Cipher Block Chaining
 - \(C_i = E_K(P_i \oplus C_{i-1}) \)
- Long-time most popular approach, starting to decline
- Plaintext changes propagate forever, ciphertext changes only one block
CBC: getting an IV
- C_0 is called the initialization vector (IV)
- Must be known for decryption
- IV should be random-looking
 - To prevent first-block equalities from leaking (lesser version of ECB problem)
- Common approaches
 - Generate at random
 - Encrypt a nonce

Stream modes: OFB, CTR
- Output FeedBack: produce keystream by repeatedly encrypting the IV
- Danger: collisions lead to repeated keystream
- Counter: produce from encryptions of an incrementing value
 - Recently becoming more popular: allows parallelization and random access

Outline
- Block ciphers and modes of operation
- Announcements intermission
- Hash functions and MACs
- Building a secure channel

Deadline related announcements
- Project 1 Canvas assignment is now open for submissions
 - Extensions implemented as “late”, check if you plan to use yours
- The deadline for the OWASP reading quiz is tonight

Outline
- Block ciphers and modes of operation
- Announcements intermission
- Hash functions and MACs
- Building a secure channel

Ideal model
- Ideal crypto hash function: pseudorandom function
 - Arbitrary input, fixed-size output
- Simplest kind of elf in box, theoretically very convenient
- But large gap with real systems: common practice is to target particular properties

Kinds of attacks
- Pre-image, “inversion”: given y, find x such that $H(x) = y$
- Second preimage, targeted collision: given x, $H(x)$, find $x' \neq x$ such that $H(x') = H(x)$
- (Free) collision: find x_1, x_2 such that $H(x_1) = H(x_2)$

Birthday paradox and attack
- There are almost certainly two people in this class with the same birthday
 - n people have $\binom{n}{2} = \Theta(n^2)$ pairs
- So only about \sqrt{n} expected for collision
- “Birthday attack” finds collisions in any function
Security levels
- For function with k-bit output:
 - Preimage and second preimage should have complexity 2^k
 - Collision has complexity $2^{k/2}$
- Conservative: use hash function twice as big as block cipher key
 - Though if you're paranoid, cipher blocks can repeat too

Non-cryptographic hash functions
- The ones you probably use for hash tables
- CRCs, checksums
- Output too small, but also not resistant to attack
- E.g., CRC is linear and algebraically nice

Short hash function history
- On the way out: MD5 (128 bit)
 - Flaws known, collision-finding now routine
- SHA(-0): first from NIST/NSA, quickly withdrawn
 - Likely flaw discovered 3 years later
- SHA-1: fixed SHA-0, 160-bit output.
 - 2^{60} collision attack described in 2013
 - First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem
- MD5, SHA1, etc., computed left to right over blocks
- Can sometimes compute $H(a \| b)$ in terms of $H(a)$
 - $\|$ means bit string concatenation
- Makes many PRF-style constructions insecure

SHA-2 and SHA-3
- SHA-2: evolutionary, larger, improvement of SHA-1
 - Exists as SHA-224, 256, 384, 512
 - But still has length-extension problem
- SHA-3: chosen recently in open competition like AES
 - Formerly known as Keccak, official standard Aug. 2015
 - New design, fixes length extension
 - Adoption has been gradual

MAC: basic idea
- Message authentication code: similar to hash function, but with a key
- Adversary without key cannot forge MACs
- Strong definition: adversary cannot forge anything, even given chosen-message MACs on other messages

CBC-MAC construction
- Same process as CBC encryption, but:
 - Start with IV of 0
 - Return only the last ciphertext block
- Both these conditions needed for security
- For fixed-length messages (only), as secure as the block cipher

HMAC construction
- $H(K \| M)$: insecure due to length extension
 - Still not recommended: $H(M \| K)$, $H(K \| M \| K)$
- HMAC: $H(K \oplus a \| H(K \oplus b \| M))$
- Standard $a = 0x5c^*$, $b = 0x36^*$
- Probably the most widely used MAC
Outline

Block ciphers and modes of operation
Announcements intermission
Hash functions and MACs
Building a secure channel

Session keys

- Don't use your long term password, etc., directly as a key
- Instead, session key used for just one channel
- In modern practice, usually obtained with public-key crypto
- Separate keys for encryption and MACing

Order of operations

- Encrypt and MAC ("in parallel")
 - Safe only under extra assumptions on the MAC
- Encrypt then MAC
 - Has cleanest formal safety proof
- MAC then Encrypt
 - Preferred by FS&K for some practical reasons
 - Can also be secure

Authenticated encryption modes

- Encrypting and MACing as separate steps is about twice as expensive as just encrypting
- "Authenticated encryption" modes do both at once
 - Newer (circa 2000) innovation, many variants
 - NIST-standardized and unpatented: Galois Counter Mode (GCM)

Ordering and message numbers

- Also don't want attacker to be able to replay or reorder messages
- Simple approach: prefix each message with counter
- Discard duplicate/out-of-order messages

Padding

- Adjust message size to match multiple of block size
- To be reversible, must sometimes make message longer
 - E.g.: for 16-byte block, append either 1, or 2 2, or 3 3 3, up to 16 "16" bytes

Padding oracle attack

- Have to be careful that decoding of padding does not leak information
- E.g., spend same amount of time MACing and checking padding whether or not padding is right
- Remote timing attack against CBC TLS published 2013

Don't actually reinvent the wheel

- This is all implemented carefully in OpenSSL, SSH, etc.
- Good to understand it, but rarely sensible to reimplement it
- You'll probably miss at least one of decades' worth of attacks
Next time

- Public-key encryption protocols
- More about provable security and appropriate paranoia