
CSci 8271
Security and Privacy in Computing

Day 3: Path ORAM
Stephen McCamant

University of Minnesota

Hiding access pattern leakage

When outsourcing data, encryption can hide the data
itself
But the sequence of accesses might also reveal
information

Including locations, read vs. write, and repeated accesses

An ORAM is a randomized data structure where the
access pattern does not reveal information

Fixed, or random from a fixed distribution

A trivial solution

On every read or write, access and re-encrypt every
block of data

ORAMs use randomized encryption that does not
reveal equalities

Secure, but quite inefficient

Permutation case

If we knew each data block would be accessed
exactly once, it would be enough to shuffle them

Composition of random permutation with any permutation
is random

Permutation takes O(1) space if pseudorandom

Implement shuffle with oblivious sort

But this does not support re-accessing blocks

Square-root ORAM

Combine permutation with some dummies, and
separate area for previously-read

Have to access each area every time
I.e., combination of permutation and trivial ORAMs

After enough accesses, reshuffle everything

Best trade-off is for re-access area and reshuffling
to be square-root size, thus the name

+ Low (sublinear) space overhead
- Expensive reshuffle must be amortized

Tradeoffs in relocation

Need to move blocks when accessing them
To not reveal duplicate accesses

Need to move more than one block per update
Otherwise, still reveals identity

Accessed block should move to one of many
locations

But want to not do too many moves, for efficiency

Tree structure for Path ORAM

Organize the storage like a complete binary tree

Each node is a bucket holding a handful (4-7) of
blocks

Position map maps each block to a leaf of the tree,
randomly
A block is stored somewhere on the path from the
root to its leaf

Or in an overflow client “stash”

Update rules

When accessing a block, process the entire path
where it might be found, and choose a new leaf for it
Rules when writing blocks back to the path:

1. Each block must stay on the path to its leaf
2. Subject to (1.), move blocks closer to the leaves if possible

On every update, opportunistically moves unrelated
blocks towards the leaves



Position map recursion

Can trade-off access steps to get lower client
storage
Instead of keeping the whole position map on the
client, store it in its own, smaller, ORAM

Can repeat until the client position map is constant size

This can be asymptotically ignored if the block size
and local storage are sufficient

Adding integrity checking

A standard simplifying assumption is that the server
is “honest but curious”

Tries to glean information but still follows the protocol

If you also need to guard against server changes,
make the tree also a Merkle tree

I.e., each node includes a cryptographic hash of its children

Bucket and stash sizing

Buckets should hold at least 4 blocks to empirically
avoid overflow

7, or 6 with more nodes, is provably sufficient

Stash size: doesn’t depend on number of blocks
Linear stash increase ensures exponentially decreased
failure rate

Proof techniques

Effect of full buckets is tricky to reason about
Pretend they are unlimited in operation, then
post-processed to fit size

Separately bound the risk of overflow out of any
partial subtree including the root

Other theoretical results

“Circuit ORAM” is like Path ORAM, but optimizes
block movement


(logn) lower bound known under multiple models

For small block sizes, O(logn) is possible with
complex, high-constant-factor hierarchical algorithms

Probably rarely practical


