CSci 8271
Security and Privacy in Computing
Day 3: Path ORAM

Stephen McCamant
University of Minnesota

Hiding access pattern leakage

£) When outsourcing data, encryption can hide the data
itself
£) But the sequence of accesses might also reveal
information
® Including locations, read vs. write, and repeated accesses
£) An ORAM is a randomized data structure where the
access pattern does not reveal information
® Fixed, or random from a fixed distribution

A trivial solution

©) On every read or write, access and re-encrypt every
block of data

£) ORAMSs use randomized encryption that does not
reveal equalities

£) Secure, but quite inefficient

Permutation case

o) If we knew each data block would be accessed
exactly once, it would be enough to shuffle them

= Composition of random permutation with any permutation
is random

£) Permutation takes O(1) space if pseudorandom
£ Implement shuffle with oblivious sort
£) But this does not support re-accessing blocks

Square-root ORAM

) Combine permutation with some dummies, and
separate area for previously-read
® Have to access each area every time
® |e, combination of permutation and trivial ORAMs
£) After enough accesses, reshuffle everything

©) Best trade-off is for re-access area and reshuffling
to be square-root size, thus the name

+ Low (sublinear) space overhead
- Expensive reshuffle must be amortized

Tradeoffs in relocation

£) Need to move blocks when accessing them
® To not reveal duplicate accesses
£) Need to move more than one block per update
® Otherwise, still reveals identity
£) Accessed block should move to one of many
locations

£) But want to not do too many moves, for efficiency

Tree structure for Path ORAM

©) Organize the storage like a complete binary tree

©) Each node is a bucket holding a handful (4-7) of
blocks

©) Position map maps each block to a leaf of the tree,
randomly

©) A block is stored somewhere on the path from the

root to its leaf
® Or in an overflow client “stash”

Update rules

£) When accessing a block, process the entire path
where it might be found, and choose a new leaf for it
£) Rules when writing blocks back to the path:
1. Each block must stay on the path to its leaf
2. Subject to (1), move blocks closer to the leaves if possible
£) On every update, opportunistically moves unrelated
blocks towards the leaves




Position map recursion

£) Can trade-off access steps to get lower client
storage
0 Instead of keeping the whole position map on the
client, store it in its own, smaller, ORAM
® Can repeat until the client position map is constant size
©) This can be asymptotically ignored if the block size
and local storage are sufficient

Adding integrity checking

£) A standard simplifying assumption is that the server
is “honest but curious”
® Tries to glean information but still follows the protocol
©) If you also need to guard against server changes,
make the tree also a Merkle tree
® l.e, each node includes a cryptographic hash of its children

Bucket and stash sizing

) Buckets should hold at least 4 blocks to empirically
avoid overflow
® 7, or 6 with more nodes, is provably sufficient
£) Stash size: doesn't depend on number of blocks

® Linear stash increase ensures exponentially decreased
failure rate

Proof techniques

) Effect of full buckets is tricky to reason about

® Pretend they are unlimited in operation, then
post-processed to fit size

) Separately bound the risk of overflow out of any
partial subtree including the root

Other theoretical results

) “Circuit ORAM" is like Path ORAM, but optimizes
block movement

o) Q(logn) lower bound known under multiple models

©) For small block sizes, O(logn) is possible with
complex, high-constant-factor hierarchical algorithms

® Probably rarely practical




