CSci 8271 Security and Privacy in Computing Day 13: Bulletproofs

Stephen McCamant University of Minnesota

Interactive proofs

- Used in complexity theory and cryptography
- A more capable prover P proves a fact to a weaker verifier V
 - Prover may have more computational power, and/or knowledge of a secret
- Power comes from interaction and randomized challenges

Interactive proof variants

- "Argument": proposed instead of "proof" when the soundness is computational
- Proof of knowledge: proves shows knowledge of a particular witness

Commitments

- 🖲 Two phases: commit, later open
 - Similar to one use of envelopes
- Binding property: can only commit to a single value
- Hiding property: value not revealed until opened
- Either binding or hiding, but not both, can be perfect

Pedersen commitments

- Based on a discrete log group with generators g and h
- **Or Example 1** Solution \mathbf{z} with randomness \mathbf{r} with $g^{x}h^{r}$
- Perfectly hiding because h^r is a random group element
- Computationally binding relates to discrete log

Zero knowledge

- Prover opens commitments to show the colors are
- different Repeat λ (20, 80, 128) times
- Formalized by showing that anyone could make a fake transcript

Interactive \rightarrow non-interactive

- The Fiat-Shamir heuristic: turn interactive proof into non-interactive proof by replacing the verifier with a hash function
- Essentially a "random oracle" assumption, which is theoretically questionable
- But still seems relatively safe in practice

Practicality for crypto proofs

- ✓ Succinct proof
- No trusted setup
- Expressive
- Efficient proving
- Efficient verification
- Post-quantum security

