Java™ RMI Tutorial

Revision1.3
JDK 1.1FCS, February 10, 1997

Copyright 1996, 1997 Sun Microsystems, Inc.
2550 Garcia #enue, Mountain Mw, California 94043-1100 U.S.A.
All rights resered. Copright in this document isvened by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid,xcbrs/e, nontransferable, perpetual,
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice this specification. This licensevallind is limited to the creation and disitibn of clean

room implementations of this specification that (i) include a complete implementation of the @nsient of

this specification without subsetting or supersetting, (ii) implement all theaicwsriand functionality of the
standard jea.* packages as defined by SUN, without subsetting or supersetting, (iii) do noy aditigional
packages, classes or methods to the jgpackages) pass all test suites relating to the most recent published
version of this specification that areadable from SUN six (6) months prior toyaheta release of the clean
room implementation or upgrade thereto, (v) do novddrom SUN source code or binary materials, and (vi)

do not include anSUN binary materials without an appropriate and separate license from SUN.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.Sv&oment is subject to restrictions &R 52.227-14(g)(2)(6/87)
and AR 52.227-19(6/87), or DR 252.227-7015(b)(6/95) and BR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun MicrosystemsaBeans, JDK, Ja, HotJaa, the Jaa Cofee Cup logo, Ja Work-
Shop, \sual Jaa, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, Opeaddks, PC-NFS, SNM, SunNet Man-
ager Solaris sunbrst design, Solstice, SunCore, SolarNet, Seim\&un Wrkstation, The Netark Is The
Computer ToolTalk, Ultra, Ultracomputing, Ultraseey Where The Netark Is Going, Sun \&kShop,
XView, Java WorkShop, the da Cofee Cup logo, andisual Jaa are trademarks orgistered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other counttassieely licensed through
X/Open Compay Ltd. OPEN LOOK® is a mgistered trademark of Nell, Inc.

All SPARC trademarks are used under license and are trademargsstereal trademarks of SRC Interna-
tional, Inc. in the United States and other countries. Products beafiRCIPademarks are based upon an
architecture deeloped by Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A RRTICULAR PURPOSE, OR NON-INFRINGEMENT

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALY. ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORAED IN NEW EDITIONS OF THE PUBLICAION. SUN MICROSYS-
TEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRDUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICAION AT ANY TIME.

For further information on Intellectual Property matters contact Sgal [Zepartment:

Trademarks, Jan O'Dell at 415-786-8191
Ratents at 415-336-0069

Table of Contents =

1 Getting Started Using RMI................L.L. 1
1.1 Write The HTML and Java Source Files............... 1
1.1.1 Define a Remote Interface 2
1.1.2 Write an ImplementationClass. 3
1.1.3 Write an Applet that Uses the Remote Service 8
1.1.4 Write the Web Page that Contains the Applet. 9

1.2 Compile and Deploy Class Files and HTML Files 9
1.2.1 Compile the Java Source Files.................. 10
1.2.2 Generate Stubs and Skeletons. 10
1.2.3 Move the HTML File to the Deployment Directory 11
1.2.4 Set Paths for Runtime......................... 11

1.3 Start the Remote Object Registry, Server, and Applet ... 11
1.3.1 Start the RMI Bootstrap Registry 11
1.3.2 StarttheServer, 12
133 RuntheApplet 13

Pageiii

Page iv Java™ RMI Tutorial—]DK 1.1 FCS, February10, 1997

~
1]

Getting Started Using RMI

This chapter shows you the steps to follow to create a distributed version of
the classic Hello World program using Java™ Remote Method Invocation
(RMI).

The distributed Hello World example uses an applet to make a remote method
call to the server from which it was downloaded to retrieve the message “Hello
World!”. When the applet runs, the message is displayed on the client.

To accomplish this, you will work through the following three lessons:
® Write The HTML and Java Source Files

® Compile and Deploy Class Files and HTML Files

® Start the Remote Object Registry, Server, and Applet

1.1 Write The HTML and Java Source Files

There are four source files for the Hello World server and applet:

1. The Java remote interface.

2. The Java remote object (server) which implements the remote interface.
3. The Java applet that remotely invokes the server’s method.

4. The HTML code for the web page that references the applet.

Page 1

1]l
~

Because the Java language requires a mapping between the fully qualified
package name of a class file and the directory path to that class, before you
begin writing Java code you need to decide on package and directory names.
(This mapping allows the Java compiler to know the directory in which to find
the class files mentioned in a Java program.) For the Hello World program
developed in this chapter, the package name is exanpl es. hel | 0 and the root
directory is $HOVE/ j ava/ nysr c/ exanpl es/ hel | o.

For example, to create the directory for your source files on Solaris, execute this
command:

nmkdi r $HOWE/ j ava/ nysrc/ exanpl es/ hel | o

1.1.1 Define a Remote Interface

Remote method invocations can fail in very different ways from local method
invocations, due to network related communication problems and server
problems. To indicate that it is a remote object, an object implements a remote
interface, which has the following characteristics:

® The remote interface must be public. Otherwise, a client will get an error
when attempting to load a remote object that implements the remote
interface.

® The remote interface extends the interface j ava. r m . Renot e.

® Each method must declare j ava. r mi . Renpt eExcepti on in its throws
clause, in addition to any application-specific exceptions.

® A remote object passed as an argument or return value (either directly or
embedded within a local object) must be declared as the remote interface,
not the implementation class.

Here is the interface definition for Hello World. The interface contains just one
method, sayHel | o, which returns a string to the caller:

package exanpl es. hel | o;
public interface Hello extends java.rm .Renpte {
String sayHello() throws java.rm . RenoteException;

}

Page 2 Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

~
1]l

1.1.2 Write an Implementation Class

Getting Started Using RMI

To write a remote object, you write a class that implements one or more remote
interfaces. The implementation class needs to:

1.

2
3
4.
5
6

Specify the remote interface(s) being implemented.

. Defi ne the constrictor for the remote object.

. Provide implementations for the methods that can be invoked remotely.

Create and install a security manager.

. Create one or more instances of a remote object.

. Register at least one of the remote objects with the RMI remote object

registry, for bootstrapping purposes.

For example, here is the source for the Hel | ol npl . j ava fi le, which contains
the code for the Hello World server. The code is followed by an explanation of
each of the preceding six steps.

package exanpl es. hel |l o;

inmport java.rm.*;
import java.rm.server. Uni cast Renot ebj ect;

public class Hell ol npl

ext ends Uni cast Renpt eObj ect
i mpl enents Hello

private String nane;

public Hellolnpl (String s) throws RenoteException {
super();
nanme = s;

}

public String sayHello() throws RenoteException {
return "Hello World!";

}

Page3

Page 4

v

public static void main(String args[])

{
/!l Create and install a security nanager
Syst em set Securi t yManager (new RM SecurityManager());
try {
Hel | ol npl obj = new Hell ol npl ("Hel | oServer");
Nami ng. rebi nd("// nyhost/ Hel | oServer”, obj);
Systemout.println("HelloServer bound in registry");
} catch (Exception e) {
Systemout.printin("Hellolnmpl err: " + e.getMssage());
e.printStackTrace();
}
}

Implement a Remote Interface

The implementation class for the Hello World example is Hel | ol npl . An
implementation class specifi es the emote interface(s) it is implementing.
Optionally, it can indicate the remote server that it is extending, which in this
example is j ava. rm . server. Uni cast Renot eQbj ect . Here is the

Hel | ol mpl class declaration:

public class Hell ol npl
i mpl enents Hello
extends java.rm.server. Uni cast Renot e(bj ect

Extending Uni cast Renpot eObj ect indicates that the Hel | ol npl class is used
to create a single (nonreplicated) remote object that uses RMI’s default sockets-
based transport for communication. If you choose to extend a remote object
from a nonremote class, you need to explicitly export the remote object by
calling the method Uni cast Renpt eCbj ect . export Cbj ect .

Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

~
1]l

Getting Started Using RMI

Define the Constructor for the Remote Object

The constructor for a remote class is no different than the constructor for a
nonremote class: it initializes the variables of each newly created instance of
the class.

Here is the constructor for the Hel | ol npl class, which initializes the private
string variable name with the name of the remote object:

private String nane;

public Hellolnpl (String s) throws java.rm .RenpteException {
super () ;
nane = s;

}
Note the following:

® The super method call invokes the no-arg constructor of
java.rm . server. Uni cast Renot eCbj ect , which “exports” the remote
object by listening for incoming calls to the remote object on an anonymous
port.

® The constructor must throw j ava. r ni . Renbt eExcept i on, because RMI’s
attempt to export a remote object during construction might fail if
communication resources are not available.

Although the call to the super no-arg constructor occurs by default if omitted,
it is included in this example to make clear the fact that Java constructs the
superclass before the class.

Provide an Implementation for Each Remote Method

The implementation class for a remote object contains the code that
implements each of the remote methods specifi ed in the emote interface.

For example, here is the implementation for the sayHel | 0 method, which
returns the string Hel | o Wor 1 d! to the caller.

public String sayHel | o() throws RenoteException {
return "Hello World!";

}

Page5

1]l
~

Page 6

Arguments to, or return values from, remote methods can be of any Java type,
including objects, as long as those objects implement the interface

java.io. Serial i zabl e. Most of the core Java classes in j ava. | ang and
java. util implement the Seri al i zabl e interface.

® Local objects are passed by copy, and only the nonstatic and nontransient
fi elds ae copied by default.

® Remote objects are passed by reference. A reference to a remote object is
actually a reference to a stub, which is a client-side proxy for the remote
object. Stubs are described fully in Section 1.2.2, “Generate Stubs and
Skeletons”.

Note — A class can defi ne methods not specifi ed in theamote interface, but
those methods can only be invoked within the virtual machine running the
service and cannot be invoked remotely.

Create and Install a Security Manager

The mai n method of the service fi rst needs to ceate and install a security
manager: either the RM Securi t yManager or one that you have defi ned
yourself. For example:

System set Securi t yManager (new RM SecurityManager());

A security manager needs to be running so that it can guarantee that the
classes loaded do not perform “sensitive” operations. If no security manager is
specifi ed, no class loading for RMI classes, local or otherwise, is allowed.

Create One or More Instances of a Remote Object

The mai n method of the service needs to create one or more instances of the
remote object which provides the service. For example:

Hel | ol npl obj = new Hell ol npl ("Hell oServer");

The constructor exports the remote object, which means that once created, the
remote object is ready to begin listening for incoming calls.

Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

~
1]l

Getting Started Using RMI

Register a Remote Object

For a caller (client, peer, or applet) to be able to invoke a method on a remote
object, that caller must fi rst obtain a eference to the remote object. Most of the
time, the reference will be obtained as a parameter to, or a return value from,
another remote method call.

For bootstrapping, the RMI system also provides a URL-based registry that
allows you to bind a URL of the form / / host / obj ect nane to the remote
object, where obj ect name is a simple string name. Once a remote object is
registered on the server, callers can look up the object by name, obtain a remote
object reference, and then remotely invoke methods on the object.

For example, the following code binds the URL of the remote object named
Hel | oSer ver to a reference for the remote object:

Nam ng. rebi nd("// nyhost/ Hel | oServer", obj);

Note the following about the arguments to the call:

® The host defaults to the current host if omitted from the URL, and no
protocol needs to be specifi ed in the URL.

® The RMI runtime substitutes a reference to the remote object’s stub for the
actual remote object reference specifi ed by theobj argument. Remote
implementation objects like instances of Hel | ol npl never leave the virtual
machine where they are created, so when a client performs a lookup in a
server’s remote object registry, a reference to the stub is returned.

® Optionally, a port number can be supplied in the URL: for example
/ /myhost:1234/HelloServer. The port defaults to 1099. It is necessary to
specify the port number only if a server creates a registry on a port other
than the default 1099.

Note — For security reasons, an application can bind or unbind only in the
registry running on the same host. This prevents a client from removing or
overwriting any of the entries in a server’s remote registry. A lookup, however,
can be done from any host.

Page7

1]l
~

Page 8

1.1.3 Write an Applet that Uses the Remote Service

The applet part of the distributed Hello World example remotely invokes the
HelloServer’s sayHello method in order to get the string “ Hello Wrld!”,
which is displayed when the applet runs. Here is the code for the applet:

package examples.hello;

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet.Applet {
String message = “;
public void init() {
try {
Hello obj = (Hello)Naming.lookup("//" +
getCodeBase().getHost() + "/HelloServer");
message = obj.sayHello();
} catch (Exception e) {
System.out.printin("HelloApplet exception: " +
e.getMessage());
e.printStackTrace();

}

}

public void paint(Graphics g) {
g.drawString(message, 25, 50);

}

1. The applet fi rst gets a eference to the “ HelloServer” fiom the server’s
registry, constructing the URL by using the getCodeBase method in
conjunction with the getHost method.

2. The applet remotely invokes the sayHello method of the HelloServer
remote object and stores the return value from the call (the string “ Hello
World!”) in a variable named message.

3. The applet invokes the paint method to draw the applet on the display,

causing the string “ Hello Wrld!”to be displayed.

Note — The constructed URL must include the host. Otherwise, the applet’s
lookup will default to the client, and the AppletSecurityManager will
throw an exception since the applet cannot access the local system, but is
instead limited to communicating only with the applet host.

Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

~
1]l

1.1.4 Write the Web Page that Contains the Applet

Here is the HTML code for the web page that references the Hello World

applet:

<HTM_>

<title>Hello Wrld</title>

<center> <hl>Hell o Worl d</hl> </center>

The nessage fromthe Hell oServer is:
<p>
<appl et codebase="../.."
code="exanpl es. hel | 0. Hel | oAppl et "
wi dt h=500 hei ght =120>
</ appl et >
</ HTM.>

Note the following:

¢ There needs to be an HTTP server running on the machine from which you
want to download classes. The applet’s codebase attribute indicates the
URL, as shown here:

codebase="../.."
The codebase in this example specifi es a diectory two levels above the

directory from which the web page was itself loaded. Using this kind of
relative path is usually a good idea.

® The applet’s code attribute specifi es the fully package-qualifi ed name of the
applet, in this example exanpl es. hel | 0. Hel | oAppl et :

code="exanpl es. hel | 0. Hel | oAppl et"

1.2 Compile and Deploy Class Files and HTML Files

Getting Started Using RMI

The source code for the Hello World example is now complete and the
$HOVE/ j ava/ mysr c/ hel | o directory has four fi les:

® Hel | 0.] ava, which contains the source code for the Hello remote interface.

® Hel |l ol npl . j ava, which is the source code for the Hellolmpl remote object
implementation, the server for the Hello World applet.

* Hel | oAppl et. j ava, which is the source code for the applet.
® index. ht M, which is the web page that references the Hello World applet.

Page9

1]l
~

Page 10

In this section, you compile the .java source fi les to ceate .class fi les. Yu
then run the rmic compiler to create stubs and skeletons. A stub is a client-
side proxy for a remote object which forwards RMI calls to the server-side
skeleton, which in turn forwards the call to the actual remote object
implementation.

When you use the javac and rmic compilers, you must specify where the
resulting class fi les should eside. For applets, all fi les should be in the applet’s
codebase directory. In this chapter, this is $HOME/public_html/codebase

Note — Some Web servers allow accessing a user’s public_html directory via an
HTTP URL constructed as “ http://host/~username/”. If your Web server
does not support this convention, you may use a fi le URL of the form

“ fi le://home/username/public_html”

1.2.1 Compile the Java Source Files

Make sure that the deployment directory $HOME/public_html/codebase
and the development directory $HOME/java/mysrc/examples/hello are
each visible via the local CLASSPATHbn the development machine.

To compile the Java source fi les, in the javac command as follows:

javac —d $HOME/public_html/codebase
Hello.java Hellolmpl.java HelloApplet.java

This command creates the directory examples/hello (if it does not already
exist) in the directory $HOME/public_html/codebase . The command then
writes to that directory the fi lesHello.class , Helloimpl.class , and
HelloApplet.class . These are the remote interface, the server, and the
applet respectively.

1.2.2 Generate Stubs and Skeletons

To create stub and skeleton fi les, uin the rmic compiler on the names of
compiled class fi les that contain mote object implementations. rmic takes
one or more class names as input and produces as output class fi les of the form
nyl npl _Skel.class and ny! npl _Stub.class

Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

~
1]l

For example, to create the stub and skeleton for the HelloImpl remote object
implementation, run rmic like this:

rmic —d $HOME/public_html/codebase examples.hello.Hellolmpl
The —d option indicates the root directory in which to place the compiled stub

and skeleton fi les. So the peceding command creates the following fi les in the
directory $HOME/public_html/codebase/examples/hello

® Hellolmpl_Stub.class

* Helloimpl_Skel.class

Note that the generated stub implements exactly the same set of remote
interfaces as the remote object itself. This means that a client can use the Java
language’s built-in operators for casting and type checking. It also means that
Java remote objects support true object-oriented polymorphism.

1.2.3 Move the HTML File to the Deployment Directory

To make the web page that references the applet visible to clients, the
index.html fi le must be moved fom the development directory to the
codebase directory. For example:

mv $HOME/java/mysrc/examples/hello/index.html
$HOME/public_html/codebase/examples/hello

1.2.4 Set Paths for Runtime

Make sure that the $HOME/public_html/codebase directory is available via
the server’s local CLASSPATH~hen you run the HelloIlmpl server.

1.3 Start the Remote Object Registry, Server, and Applet

1.3.1 Start the RMI Bootstrap Registry

Getting Started Using RMI

The RMI registry is a simple server-side bootstrap name server that allows
remote clients to get a reference to a remote object. It is typically used only to
locate the fi rst emote object an application needs to talk to. That object in turn
will provide application specifi ¢ support for fi nding other objects.

Page 11

Page 12

To start the registry on the server, execute the r m r egi st ry command. This
command produces no output and is typically run in the background. For
example, on Windows 95 or Windows NT:

start rmregistry
(Use j avaw if start is not available.)

And on Solaris:

rmregistry &

The registry by default runs on port 1099. To start the registry on a different
port, specify the port number in the command. For example, to start the
registry on port 2001 on Windows NT:

start rmregistry 2001

If the registry is running on a port other than the default, you need to specify
the port number in the URL-based methods of the j ava. r m . Nam ng class
when making calls to the registry. For example, if the registry is running on
port 2001 in the Hello World example, here is the call required to bind the URL
of the HelloServer to the remote object reference:

Nami ng. rebi nd("// myhost: 2001/ Hel | oServer", obj);
Similarly, the URL stored on the web page needs to specify the nondefault port

number, or else the applet’s attempt to look up the server in the registry will
fail:

<PARAM nane="url" val ue="//nyhost: 2001/ Hel | oServer" >

Note — You must stop and restart the registry any time you modify a remote
interface or use modifi ed/additional emote interfaces in a remote object
implementation. Otherwise, the class bound in the registry will not match the
modifi ed class.

1.3.2 Start the Server

When starting the server, the j ava. rmi . server. codebase property must be
specifi ed, so that eferences to the remote objects created by the server can
include the URL from which the stub class can be dynamically downloaded to
the client.

Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

~
1]l

The following command shows how to start the HelloImpl server, specifying
this property:

java —Djava.rmi.server.codebase=http://myhost/~myusrname/codebase/
examples.hello.Hellolmpl &

Note — The trailing / in the codebase URL must be specifi ed.

A stub class is dynamically loaded into a client’s virtual machine only when
the class is not already available locally.

1.3.3 Run the Applet

Getting Started Using RMI

Once the registry and server are running, the applet can be run. An applet is
run by loading its web page into a browser or appletviewer, as shown here:
appletviewer

http://myhost/~myusrname/codebase/examples/hello/index.html &

After running the appletviewer, you will see output similar to the following on
your display:

T =l Applet Viewer: example.hello.HelloApplet

Applet

Hella World!

I.f'.pplet started.

Page 13

1]l
~

Page 14 Java™ RMI Tutorial—]DK 1.1 FCS, February 10, 1997

	JavaTM RMI Tutorial
	Table of Contents
	Getting Started Using RMI
	1.1 Write The HTML and Java Source Files
	1.1.1 Define a Remote Interface
	1.1.2 Write an Implementation Class
	1.1.3 Write an Applet that Uses the Remote Service...
	1.1.4 Write the Web Page that Contains the Applet

	1.2 Compile and Deploy Class Files and HTML Files
	1.2.1 Compile the Java Source Files
	1.2.2 Generate Stubs and Skeletons
	1.2.3 Move the HTML File to the Deployment Directo...
	1.2.4 Set Paths for Runtime

	1.3 Start the Remote Object Registry, Server, and ...
	1.3.1 Start the RMI Bootstrap Registry
	1.3.2 Start the Server
	1.3.3 Run the Applet

