
CSci 4271W
Development of Secure Software Systems

Day 13: Isolation, Web Security part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Isolation mechanisms

The web from a security perspective

Cross-site scripting

Ideal: least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root

“Trusted”, TCB

In security, “trusted” is a bad word

X is trusted: X can break your security

“Untrusted” = okay if it’s evil

Trusted Computing Base (TCB): minimize

Restricted languages

Main application: code provided by untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting
Analogous to but predates control-flow integrity, used to
prevent control-flow hijacking

Limit memory stores and sometimes loads

Can’t jump out except to designated points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process from another

Pay overhead for creation and communication

System call interface allows many possibilities for
mischief

System-call interposition

Trusted process examines syscalls made by
untrusted

Implement via ptrace (like strace, gdb) or via kernel
change

Easy policy: deny

Interposition challenges

Argument values can change in memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to any user

chroot

Unix system call to change root directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces

OS-enabled containers

One kernel, but virtualizes all namespaces

FreeBSD jails, Linux LXC, Solaris zones, etc.

Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Outline

Isolation mechanisms

The web from a security perspective

Cross-site scripting

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: most important use is DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline

Isolation mechanisms

The web from a security perspective

Cross-site scripting

XSS: HTML/JS injection

Note: CSS is “Cascading Style Sheets”

Another use of injection template

Attacker supplies HTML containing JavaScript (or
occasionally CSS)
OWASP’s most prevalent weakness

A category unto itself
Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

attacker.com can send you evil JS directly

But XSS allows access to bank.com data

Violates same-origin policy

Not all attacks actually involve multiple sites

Reflected XSS

Injected data used immediately in producing a page

Commonly supplied as query/form parameters

Classic attack is link from evil site to victim site

Persistent XSS

Injected data used to produce page later

For instance, might be stored in database

Can be used by one site user to attack another user
E.g., to gain administrator privilege

DOM-based XSS

Injection occurs in client-side page construction

Flaw at least partially in code running on client

Many attacks involve mashups and inter-site
communication

No string-free solution

For server-side XSS, no way to avoid string
concatenation
Web page will be sent as text in the end

Research topic: ways to change this?

XSS especially hard kind of injection

Danger: complex language embedding

JS and CSS are complex languages in their own
right
Can appear in various places with HTML

But totally different parsing rules

Example: "..." used for HTML attributes and JS
strings

What happens when attribute contains JS?

Danger: forgiving parsers

History: handwritten HTML, browser competition

Many syntax mistakes given “likely” interpretations

Handling of incorrect syntax was not standardized

Sanitization: plain text only

Easiest case: no tags intended, insert at document
text level

Escape HTML special characters with entities like
< for <

OWASP recommendation: & < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in a web page
you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of escaping

Sanitization: tag allow-listing

In some applications, want to allow benign markup
like

But, even benign tags can have JS attributes

Handling well essentially requires an HTML parser
But with an adversarial-oriented design

Don’t deny-list

Browser capabilities continue to evolve

Attempts to list all bad constructs inevitably
incomplete

Even worse for XSS than other injection attacks

Filter failure: one-pass delete

Simple idea: remove all occurrences of <script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta> tag, or some
browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

Put this on something the user will be tempted to
click on

There are more than 100 handlers like this
recognized by various browsers

Use good libraries

Coding your own defenses will never work

Take advantage of known good implementations

Best case: already built into your framework
Disappointingly rare

Content Security Policy

Added HTTP header, W3C recommendation

Lets site opt-in to stricter treatment of embedded
content, such as:

No inline JS, only loaded from separate URLs
Disable JS eval et al.

Has an interesting violation-reporting mode

