
CSci 4271W
Development of Secure Software Systems
Day 23: Software Engineering and Security

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

What’s the type of the return value of getchar?

Why?

Outline

Software engineering for security

bcimgview project introduction

Fuzz testing

Saltzer & Schroeder’s principles

More secure design principles

Defensive programming

Analogy to defensive driving: drive so that there
won’t be a crash even if other drivers are negligent

Don’t just avoid bugs, reduce risks

Aim for security even if other code and
programmers are imperfect

Modularity

Divide software into pieces with well-defined
functionality
Isolate security-critical code

Minimize TCB, facilitate privilege separation
Improve auditability

Minimize interfaces

Hallmark of good modularity: clean interface

Particularly difficult:
Safely implementing an interface for malicious users
Safely using an interface with a malicious implementation

Appropriate paranoia

Many security problems come down to missing
checks

But, it isn’t possible to check everything continuously

How do you know when to check what?

Invariant

A fact about the state of a program that should
always be maintained

Assumed in one place to guarantee in another

Compare: proof by induction



Pre- and postconditions

Invariants before and after execution of a function

Precondition: should be true before call

Postcondition: should be true after return

Dividing responsibility

Program must ensure nothing unsafe happens

Pre- and postconditions help divide that
responsibility without gaps

When to check

At least once before any unsafe operation

If the check is fast

If you know what to do when the check fails

If you don’t trust
your caller to obey a precondition
your callee to satisfy a postcondition
yourself to maintain an invariant

Sometimes you can’t check

Check that p points to a null-terminated string

Check that fp is a valid function pointer

Check that x was not chosen by an attacker

Error handling

Every error must be handled
I.e, program must take an appropriate response action

Errors can indicate bugs, precondition violations, or
situations in the environment

Error codes

Commonly, return value indicates error if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to handler

Good: avoid need for manual copying, not dropped

May support: automatic cleanup (finally)

Bad: non-local control flow can be surprising

Outline

Software engineering for security

bcimgview project introduction

Fuzz testing

Saltzer & Schroeder’s principles

More secure design principles



Project aspects

Threat modeling

Code auditing

Attack creation

Security report

Project scenario

Benign but buggy image viewer

Key threat class: opening untrusted images
Imagine web or email downloads
Similar to many historical problems

Project logistics

Individual project

Handout and code to be posted by tonight

Early submission (feedback only) Fri 4/23

Final submission Fri 4/30

Outline

Software engineering for security

bcimgview project introduction

Fuzz testing

Saltzer & Schroeder’s principles

More secure design principles

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.



What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure or interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations

Outline

Software engineering for security

bcimgview project introduction

Fuzz testing

Saltzer & Schroeder’s principles

More secure design principles

A classic paper

Jerome H. Saltzer and Michael D. Schroeder, “The
Protection of Information in Computer Systems.” In
Proceedings of the IEEE, Sept. 1975. (853 citations per
IEEE)

Economy of mechanism

Security mechanisms should be as simple as
possible

Good for all software, but security software needs
special scrutiny

Fail-safe defaults

When in doubt, don’t give permission

Whitelist, don’t blacklist

Obvious reason: if you must fail, fail safe

More subtle reason: incentives

Complete mediation

Every mode of access must be checked
Not just regular accesses: startup, maintenance, etc.

Checks cannot be bypassed
E.g., web app must validate on server, not just client



Open design

Security must not depend on the design being
secret
If anything is secret, a minimal key

Design is hard to keep secret anyway
Key must be easily changeable if revealed
Design cannot be easily changed

Open design: strong version

“The design should not be secret”

If the design is fixed, keeping it secret can’t help
attackers

But an unscrutinized design is less likely to be
secure

Separation of privilege

Real world: two-person principle

Direct implementation: separation of duty

Multiple mechanisms can help if they are both
required

Password and wheel group in Unix

Least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root

Least privilege: privilege separation

Programs must also be divisible to avoid excess
privilege

Classic example: multi-process OpenSSH server

N.B.: Separation of privilege 6= privilege separation

Least common mechanism

Minimize the code that all users must depend on for
security

Related term: minimize the Trusted Computing Base
(TCB)

E.g.: prefer library to system call; microkernel OS

Psychological acceptability

A system must be easy to use, if users are to apply
it correctly

Make the system’s model similar to the user’s
mental model to minimize mistakes

Sometimes: work factor

Cost of circumvention should match attacker and
resource protected

E.g., length of password

But, many attacks are easy when you know the bug



Sometimes: compromise recording

Recording a security failure can be almost as good
as preventing it

But, few things in software can’t be erased by root

Outline

Software engineering for security

bcimgview project introduction

Fuzz testing

Saltzer & Schroeder’s principles

More secure design principles

Separate the control plane

Keep metadata and code separate from untrusted
data

Bad: format string vulnerability

Bad: old telephone systems

Defense in depth

Multiple levels of protection can be better than one

Especially if none is perfect

But, many weak security mechanisms don’t add up

Canonicalize names

Use unique representations of objects

E.g. in paths, remove ., .., extra slashes, symlinks

E.g., use IP address instead of DNS name

Fail-safe / fail-stop

If something goes wrong, behave in a way that’s safe

Often better to stop execution than continue in
corrupted state

E.g., better segfault than code injection


