
CSci 4271W
Development of Secure Software Systems

Day 24: Design Principles and Authentication
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Saltzer & Schroeder’s principles

More secure design principles

User authentication

Error rate trade-offs

Web authentication

A classic paper

Jerome H. Saltzer and Michael D. Schroeder, “The
Protection of Information in Computer Systems.” In
Proceedings of the IEEE, Sept. 1975. (853 citations per
IEEE)

Economy of mechanism

Security mechanisms should be as simple as
possible

Good for all software, but security software needs
special scrutiny

Fail-safe defaults

When in doubt, don’t give permission

Whitelist, don’t blacklist

Obvious reason: if you must fail, fail safe

More subtle reason: incentives

Complete mediation

Every mode of access must be checked
Not just regular accesses: startup, maintenance, etc.

Checks cannot be bypassed
E.g., web app must validate on server, not just client

Open design

Security must not depend on the design being
secret
If anything is secret, a minimal key

Design is hard to keep secret anyway
Key must be easily changeable if revealed
Design cannot be easily changed

Open design: strong version

“The design should not be secret”

If the design is fixed, keeping it secret can’t help
attackers

But an unscrutinized design is less likely to be
secure

Separation of privilege

Real world: two-person principle

Direct implementation: separation of duty

Multiple mechanisms can help if they are both
required

Password and wheel group in Unix

Least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root

Least privilege: privilege separation

Programs must also be divisible to avoid excess
privilege

Classic example: multi-process OpenSSH server

N.B.: Separation of privilege 6= privilege separation

Least common mechanism

Minimize the code that all users must depend on for
security

Related term: minimize the Trusted Computing Base
(TCB)

E.g.: prefer library to system call; microkernel OS

Psychological acceptability

A system must be easy to use, if users are to apply
it correctly

Make the system’s model similar to the user’s
mental model to minimize mistakes

Sometimes: work factor

Cost of circumvention should match attacker and
resource protected

E.g., length of password

But, many attacks are easy when you know the bug

Sometimes: compromise recording

Recording a security failure can be almost as good
as preventing it

But, few things in software can’t be erased by root

Outline

Saltzer & Schroeder’s principles

More secure design principles

User authentication

Error rate trade-offs

Web authentication

Separate the control plane

Keep metadata and code separate from untrusted
data

Bad: format string vulnerability

Bad: old telephone systems

Defense in depth

Multiple levels of protection can be better than one

Especially if none is perfect

But, many weak security mechanisms don’t add up

Canonicalize names

Use unique representations of objects

E.g. in paths, remove ., .., extra slashes, symlinks

E.g., use IP address instead of DNS name

Fail-safe / fail-stop

If something goes wrong, behave in a way that’s safe

Often better to stop execution than continue in
corrupted state

E.g., better segfault than code injection

Outline

Saltzer & Schroeder’s principles

More secure design principles

User authentication

Error rate trade-offs

Web authentication

Authentication factors

Something you know (password, PIN)

Something you have (e.g., smart card)

Something you are (biometrics)

CAPTCHAs, time and location, . . .

Multi-factor authentication

Passwords: love to hate

Many problems for users, sysadmins, researchers

But familiar and near-zero cost of entry

User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

Model password choice as probabilistic process

If uniform, log2 jSj

Controls difficulty of guessing attacks

Hard to estimate for user-chosen passwords
Length is an imperfect proxy

Password hashing

Idea: don’t store password or equivalent information

Password ‘encryption’ is a long-standing misnomer
E.g., Unix crypt(3)

Presumably hard-to-invert function h

Store only h(p)

Dictionary attacks

Online: send guesses to server

Offline: attacker can check guesses internally

Specialized password lists more effective than literal
dictionaries

Also generation algorithms (s ! $, etc.)

�25% of passwords consistently vulnerable

Better password hashing

Generate random salt s, store (s; h(s; p))
Block pre-computed tables and equality inferences
Salt must also have enough entropy

Deliberately expensive hash function
AKA password-based key derivation function (PBKDF)
Requirement for time and/or space

Password usability

User compliance can be a major challenge
Often caused by unrealistic demands

Distributed random passwords usually unrealistic

Password aging: not too frequently

Never have a fixed default password in a product

Backup authentication

Desire: unassisted recovery from forgotten password

Fall back to other presumed-authentic channel
Email, cell phone

Harder to forget (but less secret) shared information
Mother’s maiden name, first pet’s name

Brittle: ask Sarah Palin or Mat Honan

Centralized authentication

Enterprise-wide (e.g., UMN ID)

Anderson: Microsoft Passport

Today: Facebook Connect, Google ID

May or may not be single-sign-on (SSO)

Biometric authentication

Authenticate by a physical body attribute

+ Hard to lose

- Hard to reset

- Inherently statistical

- Variation among people

Example biometrics

(Handwritten) signatures

Fingerprints, hand geometry

Face and voice recognition

Iris codes

Outline

Saltzer & Schroeder’s principles

More secure design principles

User authentication

Error rate trade-offs

Web authentication

Imperfect detection

Many security mechanisms involve imperfect
detection/classification of relevant events

Biometric authentication

Network intrusion detection

Anti-virus (malware detection)

Anything based on machine learning

Detection results

True positive: detector says yes, reality is yes

True negative: detector says no, reality is no

False positive: detector says yes, reality is no

False negative: detector says no, reality is yes

Note: terminology may flip based on detecting good
or bad

Why a trade-off?

Imperfect methods have a trade-off between
avoiding FPs and avoiding FNs
Sometimes a continuous trade-off (curve), e.g. based
on a threshold

E.g., spam detector “score”

May need to choose both a basic mechanism and a
threshold

Two ratios to capture the trade-off

True positive rate:

TPR =
TP
P
=

TP
TP+ FN

= 1- FNR

False positive rate:

FPR =
FP
N
=

FP
FP+ TN

= 1- TNR

ROC curve intro

Error rates: ROC curve Extreme biometrics examples

exact iris code match: very low false positive
(false authentication)

similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

A if (iris()) return REJECT; else return ACCEPT;

B return REJECT;

C if (iris()) return ACCEPT; else return REJECT;

D if (iris() && pitch()) return ACCEPT; else return REJECT;

E return ACCEPT;

F if (rand() & 1) return ACCEPT; else return REJECT;

G if (pitch()) return ACCEPT; else return REJECT;

H if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Saltzer & Schroeder’s principles

More secure design principles

User authentication

Error rate trade-offs

Web authentication

Per-website authentication

Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
- Inconvenient, many will reuse passwords
- Lots of functionality each site must implement correctly
- Without enough framework support, many possible pitfalls

Building a session

HTTP was originally stateless, but many sites want
stateful login sessions

Built by tying requests together with a shared
session ID

Must protect confidentiality and integrity

Session ID: what

Must not be predictable
Not a sequential counter

Should ensure freshness
E.g., limited validity window

If encoding data in ID, must be unforgeable
E.g., data with properly used MAC
Negative example: crypt(username k server secret)

Session ID: where

Session IDs in URLs are prone to leaking
Including via user cut-and-paste

Usual choice: non-persistent cookie
Against network attacker, must send only under HTTPS

Because of CSRF, should also have a non-cookie
unique ID

Session management

Create new session ID on each login

Invalidate session on logout

Invalidate after timeout
Usability / security tradeoff
Needed to protect users who fail to log out from public
browsers

Account management

Limitations on account creation
CAPTCHA? Outside email address?

See previous discussion on hashed password
storage
Automated password recovery

Usually a weak spot
But, practically required for large system

Client and server checks

For usability, interface should show what’s possible

But must not rely on client to perform checks

Attackers can read/modify anything on the client
side

Easy example: item price in hidden field

Direct object references

Seems convenient: query parameter names
resource directly

E.g., database key, filename (path traversal)

Easy to forget to validate on each use

Alternative: indirect reference like per-session table
Not fundamentally more secure, but harder to forget
check

Function-level access control

E.g. pages accessed by URLs or interface buttons

Must check each time that user is authorized
Attack: find URL when authorized, reuse when logged off

Helped by consistent structure in code

