
ViewPoints: Differential String Analysis for Discovering
Client- and Server-Side Input Validation Inconsistencies

Muath Alkhalaf*, Shauvik Roy Choudhary†, Mattia Fazzini†
Tevfik Bultan*, Alessandro Orso†, Christopher Kruegel*

*Department of Computer Science †College of Computing
University of California Georgia Institute of Technology

Santa Barbara, CA, USA Atlanta, GA, USA
{muath | bultan | chris}@cs.ucsb.edu {shauvik | mfazzini | orso}@cc.gatech.edu

ABSTRACT
Since web applications are easily accessible, and often store a large
amount of sensitive user information, they are a common target for
attackers. In particular, attacks that focus on input validation vul-
nerabilities are extremely effective and dangerous. To address this
problem, we developed ViewPoints—a technique that can identify
erroneous or insufficient validation and sanitization of the user in-
puts by automatically discovering inconsistencies between client-
and server-side input validation functions. Developers typically
perform redundant input validation in both the front-end (client)
and the back-end (server) components of a web application. Client-
side validation is used to improve the responsiveness of the appli-
cation, as it allows for responding without communicating with the
server, whereas server-side validation is necessary for security rea-
sons, as malicious users can easily circumvent client-side checks.
ViewPoints (1) automatically extracts client- and server-side in-
put validation functions, (2) models them as deterministic finite
automata (DFAs), and (3) compares client- and server-side DFAs
to identify and report the inconsistencies between the two sets of
checks. Our initial evaluation of the technique is promising: when
applied to a set of real-world web applications, ViewPoints was
able to automatically identify a large number of inconsistencies in
their input validation functions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Reliability, Verification

Keywords
Web security, input validation, differential string analysis, web test-
ing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15-20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$10.00.

1. INTRODUCTION
Web applications are important and increasingly widespread. In

fact, nowadays, it is common to use web applications for daily ac-
tivities such as reading the news, doing online banking, and watch-
ing movies. Together with the growth of their user base, the com-
plexity of web applications has also grown. Whereas early web
applications were mostly static, today’s applications are highly dy-
namic, with complex logic on both the client and the server sides.
In general, web applications follow a three-tier architecture that
consists of a front-end component (typically, a web browser run-
ning on the user machine), a back-end component (a remote web
server), and a back-end data store (a database).

Because of their nature, web applications present a specific set of
security challenges. First, unlike traditional desktop applications,
web applications can be accessed by any user who is connected to
the Internet, which exposes a web application to a large base of
potential attackers. Second, the back-end database contains data
that is often sensitive and confidential, holding information about
a potentially large number of users. Finally, the communication
between the different layers of a web application occurs through
directives (commands) that often embed user input and are writ-
ten in many languages, such as XML, SQL, and HTML. For these
reasons, it is of paramount importance to properly validate and san-
itize user input, to make sure that malicious input cannot result in
unintended execution of harmful commands and, as a consequence,
provide attackers with access to sensitive information. Unfortu-
nately, it is not uncommon for developers to perform either faulty
or incomplete input checks, which can leave the web application
susceptible to input validation vulnerabilities. Popular examples
of attacks that leverage such vulnerabilities are interpreter injection
(e.g., cross-site scripting (XSS)), locale and unicode attacks, file
system attacks, and buffer overflows, which are among the most
common and dangerous attacks for web applications [21,22]. There
are also attacks that exploit application-specific vulnerabilities and
that are even harder to identify because they depend on the partic-
ular input validation logic performed on the target application.

One way to make sure that the input validation performed by
a web application is adequate is to find a characterization of the
potential attacks. It is often possible, for instance, to encode well-
known attacks in the form of attack patterns and use these patterns
to suitably sanitize inputs. In other cases, however, the checks to be
performed on the inputs are specific to the functionality of the web
application, and the input validation may be tightly coupled with
and dependent on the application logic. Because they are specific to
individual applications, there are no pre-defined patterns that can be
used to assess these types of input checks. In these cases, to make

sure that the input validation is adequate, it would be necessary
to produce a different specification for each different application,
which is a tedious and error-prone task.

To address this problem, we present ViewPoints, a novel ap-
proach for automatically identifying input validation issues in web
applications. ViewPoints is based on the observation that develop-
ers often introduce redundant checks both in the front-end (client)
and the back-end (server) component of a web application. Client-
side checks are mainly introduced for performance reasons, as they
can save one network round-trip and the additional server-side pro-
cessing that would be incurred when invalid input is sent to and
subsequently rejected by the web application. Therefore, to im-
prove the user experience and provide instant feedback, many web
applications validate inputs at the client side before making the ac-
tual request to the server. On the other hand, since client-side val-
idation can often be circumvented by malicious users, the server
cannot trust the inputs coming from the client side, and all input
checks performed on the client side must be repeated on the server
side before user input is processed and possibly passed to security
sensitive functions.

The key insight behind ViewPoints is that, because checks per-
formed at the client and server sides should enforce the same set of
constraints on the inputs, we can leverage the redundancy in these
checks to automatically identify issues with input validation. If
client-side checks are more restrictive, the web application may ac-
cept inputs that legitimate clients can never produce, which is prob-
lematic because malicious users can bypass client-side checks. If
server-side checks are more restrictive, conversely, the client may
produce requests that are subsequently rejected by the server, which
will result in poor performance and reduce the responsiveness of
the web application. Moreover, correctness of the client-side input
validation functions is also important for addressing the emerging
class of client-side input-validation vulnerabilities [19]. Based on
this insight, ViewPoints compares the checks performed on client
and server sides against each other and identifies and reports incon-
sistencies between them. More precisely, the ViewPoints technique
consists of three main steps:

Extracting and mapping input validation operations at the
client and server sides. ViewPoints automatically extracts client-
and server-side input validation functions and maps correspond-
ing input validation operations on the client and on the server.

Modeling input validation functions as deterministic finite au-
tomata (DFAs). After extracting and mapping them, ViewPoints
uses string analysis techniques to model client- and server-side
input validation functions as DFAs that encode the set of con-
straints that the functions impose on the inputs.

Identifying and reporting inconsistencies in corresponding in-
put validation functions. ViewPoints compares the client- and
server-side DFA models of corresponding inputs to identify in-
consistencies between them, that is, checks that are performed
only on one of the two sides. It then reports checks performed
only on the client as potential server-side vulnerabilities, and
checks performed only on the server as opportunities for im-
proving the efficiency of the web application and as potential
client-side vulnerabilities.

To evaluate the effectiveness and practicality of our approach, we
implemented a prototype of ViewPoints that can analyze web ap-
plications developed using Java EE frameworks and used the pro-
totype on seven real-world web applications. The results of our
evaluation, albeit preliminary, are promising and motivate further

research. Overall, ViewPoints was able to identify inconsistencies
in five out of the seven applications considered. More precisely,
ViewPoints identified 2 server-side and over 200 client-side input-
validation inconsistencies. Additionally, Viewpoints was able to
generate counterexamples for the inconsistencies it identified, which
guarantees that the issues found are true positives, that is, they cor-
respond to actual problems in the applications.

The main contributions of this paper are:

• A novel technique, ViewPoints, that leverages redundant client-
and server-side input checks in web applications to automatically
identify, through differential automata-based string analysis, se-
curity and efficiency issues in input validation code.
• An implementation of the ViewPoints approach that can be used

on web applications based on Java EE frameworks.
• An empirical study performed on several real-world web appli-

cations that provides initial, yet clear evidence that ViewPoints
is able to identify actual input validation problems in real code
effectively and efficiently.

The rest of the paper is organized as follows. Section 2 presents
a motivating example for our work. Section 3 illustrates our ap-
proach. Section 4 discusses our current implementation of View-
Points. Section 5 presents our empirical results. Section 6 discusses
related work. Finally, Section 7 provides concluding remarks and
sketches future research directions.

2. MOTIVATING EXAMPLE
To motivate our work, we use an example taken from a real web

application called JGOSSIP (http://sourceforge.net/
projects/jgossipforum/), a message board written using Java
technology. Figure 1 provides a high-level, intuitive view of the
web application, for illustration purposes. The parts of the web
application shown allow users to register their email address by en-
tering it into a form and submitting it to a web back-end hosted on
a server at site.com.

Typically, in order to access functionality on the server side, the
client side issues an HTTP request that contains a set of input el-
ements expressed as 〈name, value〉 pairs. When this happens,
the different input elements are marshaled (i.e.,packaged together),
and the resulting bundle is passed to the server-side code as an in-
put. The server code then accesses these inputs by name by invok-
ing library functions provided by the language or framework used.
These functions, which we call input functions, parse the HTTP re-
quest containing the inputs and return the values of the requested
input. The server then processes the retrieved input values, nor-
mally performs some form of input validation, and then uses them
in possibly critical or sensitive functions.

To illustrate, Figures 2 and 3 show two snippets of client- and
server-side validation code, respectively, from JGOSSIP (we slightly
simplified the code to make it more readable and self-contained).
The user fills the client-side form, shown on lines 18–22 of Fig-
ure 2, by providing an email address to the HTML input element
with name “email” and by clicking on the “Submit” button. When
this button is clicked, the browser invokes the JavaScript function
validateEmail, which is assigned to the onsubmit event of
the form. This function first fetches the email address supplied by
the user from the corresponding form field. It then checks if this
address has zero length and, if so, accepts the empty address on
line 6. Otherwise, on lines 9 and 10, the function creates two regu-
lar expressions. The first one specifies three patterns that the email
address should not match: a single space character, a string with
the @ symbol on both ends, and the string “@.”. The second one

http://sourceforge.net/
projects/jgossipforum/
site.com

Web application
(client side)

PowerBook G4

 john.doe@mail.com

Unsubscribe

Email:

User

Internet

Request
http://site.com/unsubscribe.jsp?email=john.doe@mail.com

Submit
Confirmation Page

Congratulations!

Your account has been unsubscribed
...

HTML page

<html>
...
<script>
 function validateEmail(form) {
 var emailStr = form["email"].value;
 if(emailStr.length == 0) {
 return true;
 }
 var r1 = new RegExp("()|(@.*@)|(@\\.)");
 var r2 = new RegExp("^[\\w]+@([\\w]+\\.[\\w]{2,4})$");
 if(!r1.test(emailStr) && r2.test(emailStr)) {
 return true;
 }
 return false;
 }
</script>
...
<form name="subscribeForm" action="/Unsubscribe"
 onsubmit="return validateEmail(this);">
 Email: <input type="text" name="email" size="64" />
 <input type="submit" value="Unsubscribe" />
</form>
...
</html>

HTML form Web application
(server side)

...
public class Validator {
 public boolean validateEmail(Object bean, Field f, ..) {
 String val = ValidatorUtils.getValueAsString(bean, f);
 Perl5Util u = new Perl5Util();
 if (val != null && val.trim().length > 0) {
 if ((!u.match("/()|(@.*@)|(@\\.)/", val))
 && u.match("/^[\\w]+@([\\w]+\\.[\\w]{2,4})$/",
 val)) {
 return true;
 } else {
 return false;
 }
 }
 return true;
 }
}
...

Java servlet
unsubscribe.jsp

Web server

Figure 1: Example web application.

1 <html>
2 ...
3 <script>
4 function validateEmail(form) {
5 var emailStr = form["email"].value;
6 if(emailStr.length == 0) {
7 return true;
8 }
9 var r1 = new RegExp("()|(@.*@)|(@\\.)");

10 var r2 = new RegExp("^[\\w]+@([\\w]+\\.[\\w]{2,4})$");
11 if(!r1.test(emailStr) && r2.test(emailStr)) {
12 return true;
13 }
14 return false;
15 }
16 </script>
17 ...
18 <form name="subscribeForm" action="/Unsubscribe"
19 onsubmit="return validateEmail(this);">
20 Email: <input type="text" name="email" size="64" />
21 <input type="submit" value="Unsubscribe" />
22 </form>
23 ...
24 </html>

Figure 2: JavaScript and HTML code snippets for client-side
validation.

specifies a pattern that the email address should match: start with
a set of alphanumeric characters, followed by symbol @, further
followed by another set of alphanumeric characters, and finally ter-
minated by a dot followed by two to four additional alphanumeric
characters. If the email address does not match the first regular
expression and matches the second one, this function returns true,
indicating acceptance of the email address (line 12), and the form
data is sent to the server. Otherwise, the function rejects the email
address by returning false on line 14. This results in an alert mes-
sage to inform the user that the email provided is invalid.

When the form data is received by the server, it is first passed to
the server-side validation function. For the specific form in this ex-
ample, the validation function used is method validateEmail
from class Validator, which is shown in Figure 3. This method
calls a routine on line 3 to extract the value contained in the email
field from the form object (bean) and stores it in variable val.
It then uses library Perl5Util to perform the regular expression
match operations, which allows for using the same Perl style reg-
ular expression syntax used in the client. First, the method checks
whether the email string is null or has zero length after applying
the trim function, on line 5. If so, it accepts the string. Other-

1 public class Validator {
2 public boolean validateEmail(Object bean, Field f, ..) {
3 String val = ValidatorUtils.getValueAsString(bean, f);
4 Perl5Util u = new Perl5Util();
5 if (!(val == null || val.trim().length == 0)) {
6 if ((!u.match("/()|(@.*@)|(@\\.)/", val))
7 && u.match("/^[\\w]+@([\\w]+\\.[\\w]{2,4})$/",
8 val)) {
9 return true;

10 } else {
11 return false;
12 }
13 }
14 return true;
15 }
16 ...
17 }

Figure 3: Java server-side validation code snippet.

wise, it checks the address using the same regular expressions used
on the client side. As shown on lines 6–12, the address is accepted
if it satisfies these regular expression checks, and it is used for fur-
ther processing on the server side (e.g., it may be sent as a query
string to the database); otherwise, it is rejected on the server side,
and the user is taken back to the form.

As shown in this example, the regular expression checks are sim-
ilar on both ends, which emphasizes that validations on both ends
should allow or reject the same set of inputs. Otherwise, there
would be mismatches that may create problems for the application.
As we stated in the Introduction, if the server side is less strict than
the client side, this would be considered a vulnerability (even when
such a vulnerability is not exploitable) since it violates a common
security policy that server-side checks should not be weaker than
the client-side checks: a malicious user could bypass the client-side
checks and submit to the server an address that does not comply
with the required format, which may result in an attack. For exam-
ple, an attacker could inject SQL code in the email that may result
in an SQL injection attack [11]. In general, server-side checks that
are less strict than the client-side checks could lead to two types
of undesirable behaviors: (1) the server side allows some wrong or
malicious data to enter the system, leading to failures or attacks; (2)
the client side rejects legitimate values that should be accepted, re-
sulting in the user being unable to access some of the functionality
provided by the web application.

In our example, the client-side validation code shown in Figure 2
rejects a sequence of one of more white space characters (e.g.," "),

for which the condition on line 6 evaluates to false and the regular
expression check on line 11 fails, thereby resulting in the function
returning false. However, for the same input, the second condition
on line 5 of the server-side validation method (Figure 3) evaluates
to false, due to the trim function call, and the string is therefore
accepted by the server. This would lead to white spaces being ac-
cepted as email addresses by the server, which might in turn lead to
failures (e.g., the web application might try to send an email to the
user, which would fail due to an invalid email address) or attacks,
such as a denial-of-service attack.

In the following sections, we show how our ViewPoints approach
can automatically identify such inconsistencies, thus detecting and
preventing this kind of issues.

3. OUR APPROACH:
DIFFERENTIAL STRING ANALYSIS

As we discussed in the Introduction, the basic intuition behind
ViewPoints is that we can leverage redundant checks in the client-
and server-side components of web applications to detect inconsis-
tencies between the two that may lead to security vulnerabilities,
inefficiencies, and general misbehaviors. More precisely, we use
the checks performed by the client (resp., server) as a specification
to verify the checks performed by the server (resp., client).

Server-side input checks should never be less strict than their
client-side counterparts, as client-side checks can be bypassed by
malicious users. In fact, less strict server-side checks may lead to
common web application vulnerabilities that the Open Web Ap-
plication Security Project (OWASP) considers to be of very high
severity and with a very high likelihood of being exploited [23].

Obviously, it is also possible for client-side checks to be less
strict than server-side checks. This can potentially lead to client-
side vulnerabilities [19]. Moreover, missing checks on the client
side may result in unnecessary network communications and server-
side computation; adding such checks can therefore improve the
responsiveness and performance of the overall web application.

To identify input-validation inconsistencies between the client
and the server, ViewPoints (1) extracts and maps input validation
operations at the client and server sides, (2) models input validation
functions as deterministic finite automata (DFAs), and (3) identifies
and reports inconsistencies in corresponding input validation func-
tions. Figure 4 provides a high-level view of the three steps of our
approach. In the following sections, we describe these three steps
in detail.

3.1 Input Validation Extraction
The goals of this step are to (1) automatically extract the snippets

of input validation code from a web application, on both the client
side and the server side, and (2) map client- and server-side input
validation operations for the same input to each other. Because
web applications can be developed using a number of languages
and technologies, and both extraction and mapping highly depend
on the specific languages and technologies used, it is not possi-
ble to devise a general technique for this step that would work for
all applications. Therefore, in the input validation extraction and
mapping step of ViewPoints, we focus on a specific class of web
applications.

As far as languages are concerned, we target web applications
that use Java on the server side and JavaScript on the client side,
as these are among the most commonly used languages for the de-
velopment of web applications. As for technologies, we focus on
web applications built using any Java Enterprise Edition (EE) web
framework, such as Google Web Toolkit (http://code.google.

com/webtoolkit/), Struts (http://struts.apache.org/),
and Spring MVC (http://www.springsource.org/). We fo-
cused on these technologies because they are the most popular ap-
plication development frameworks for web applications.

3.1.1 Input Validation Identification
ViewPoints starts the extraction process by identifying entry

points of the web application, that is, points where user input is
read. At the client side, such points correspond to input fields in
web forms. Although in theory ViewPoints would need to ana-
lyze all dynamically generated web pages and corresponding web
forms to do that, modern web application frameworks let develop-
ers specify in a configuration file the input fields of a web applica-
tion, together with the JavaScript validation functions to be applied
to each field. By leveraging this information, Viewpoints can iden-
tify (1) the complete set of validated inputs on the client side, and
(2) the corresponding set of JavaScript functions that are used for
validating such inputs.

The identification of the input validation code on the server side
is analogous to that of the client side, with the difference that val-
idation is performed using a different language—Java instead of
JavaScript—and that parameters are read through calls to input
functions, as we discussed in Section 2. This second difference
is almost irrelevant because, analogously to the client side, web ap-
plication frameworks also allow developers to specify server side
inputs and corresponding validation functions. Also for the server
side, therefore, an analysis of the web application’s configuration
file can provide ViewPoints with (1) the complete set of validated
inputs for the server side and (2) the set of Java functions that are
used for validating each of these inputs.

It is worth noting that web applications could also perform input
validation checks directly in the code, without explicitly specify-
ing inputs and corresponding validating functions in a configura-
tion file. However, we did not find any occurrence of this situation
in the web applications we analyzed. Moreover, if these cases were
found to be relevant, it would always be possible to perform, in
addition to the configuration file analysis that we are currently per-
forming, an analysis of the dynamically generated JavaScript code
on the client side and an analysis of the Java code on the server
side, as we did in previous work [1, 9].

3.1.2 Input Validation Analysis
After identifying the input validation functions for each input on

the server side and client side, ViewPoints analyzes these functions
to build a summary validation function for each input. Intuitively,
given an input i, its summary validation function consists of the
concatenation of all the relevant statements in all the validation
functions that are applied to i. More precisely, ViewPoints iden-
tifies, in the validation functions for i, all and only the statements
that operate on i, directly or indirectly, such as string manipulation
operations on i and conditional statements affected by i’s value.
The rest of the code is disregarded because it is irrelevant for the
validation of i. Summary validation functions are built differently
for the client side and the server side.

On the client side, input validation is performed using JavaScript
code, which is notoriously difficult to analyze statically due to its
highly dynamic and loosely-typed nature [17]. Therefore, View-
Points extracts the relevant client-side input validation code using
dynamic slicing [24].

Specifically, ViewPoints (1) executes, in sequence, all of the val-
idation functions associated with i and (2) collects the traces pro-
duced by the resulting executions. ViewPoints performs these steps
several times using different values for i chosen from a pool of

http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://struts.apache.org/
http://www.springsource.org/

Task 2:
Input validation

modeling
using DFAs

Task 1:
Input validation
extraction and

mapping

Client side

Server side

Web application
Input validation

operations
Input validation

DFAs

Task 3:
Inconsistency
identification
and reporting

Counter
example

JS

Java

Figure 4: High-level view of ViewPoints.

representative values, generated using heuristics that are based on
the type of the input field, and then uses the collected traces to
compute dynamic slices for the executions. The trace collection
is performed using a modified JavaScript interpreter, as discussed
in Section 4.1. In particular, the modified interpreter converts all
accesses to objects and arrays to accesses to specific memory lo-
cations, which avoids imprecision due to the use of objects, ar-
rays, and aliasing. While slicing along a set of traces, ViewPoints
handles internal function calls by inlining the code of the callees,1

while external calls are treated as uninterpreted functions and are
passed to the subsequent string analysis without further expansion
(see Section 3.2). At the end of this phase, the slice for a given
input is a sequence of statements that contains all of the relevant
validation code for that input and is thus the summary validation
function for it.

On the server side, input validation functions are written in Java,
which is a language considerably more amenable to analysis than
JavaScript. Therefore, ViewPoints identifies summary validation
functions on the server side using static, rather than dynamic slic-
ing [24]. This way, it can avoid possible problems of incomplete-
ness related to the fact that a dynamic analysis might not exercise
all possible behaviors of the validation functions. Similar to what it
does on the client side, ViewPoints computes a slice for each input
by considering in sequence all of the input validation functions as-
sociated with that input, inlining internal calls, and treating external
calls as uninterpreted functions.

The final result of this first step of the ViewPoints technique is
the following. For each validated input of the web application,
ViewPoints produces two summary validation functions, one for
the client side and a corresponding one for the server side. These
pairs of summary validation functions are the input of the subse-
quent phase of the technique, which we describe in detail in the
following section.

3.2 Input Validation Modeling Using DFAs
In its second step, ViewPoints performs automata-based string

analysis to model the input checks performed by the summary val-
idation functions computed in the previous step. Given a sum-
mary validation function, ViewPoints computes an over approxi-
mation of the string variable values at each program point using
a flow- and path-sensitive, intra-procedural, automata-based sym-
bolic string analysis algorithm that we defined in previous work
for JavaScript [1]. The algorithm we use in ViewPoints is an ex-
tended version of the original algorithm that handles both Java and
JavaScript string manipulation operations. Our string analysis al-

1Although inlining can be problematic in the case of recursion and
in the presence of deep call graphs, validation functions tend to be
simple and are not affected by these issues. If this were not the
case, it would always be possible to stop the inlining at a given
depth and introduce approximations.

gorithm represents possible values of a string variable at a program
point using a deterministic finite automaton (DFA). Since DFAs can
accept infinite sets, the data flow lattice corresponding to our string
analysis is an infinite lattice with infinite chains, and we achieve
convergence using an automata widening operator [3]. We use a
symbolic automaton representation where the transitions of an au-
tomaton are represented as a Multi-terminal Binary Decision Dia-
gram (MBDD).

The input to our algorithm (Algorithm 1) is the control flow
graph (CFG) of the given validation function. Each node in the
CFG represents a statement in the validation function. In this dis-
cussion, we will only concentrate on the types of nodes/statements
that are crucial for our analysis.

Algorithm 1 STRINGANALYSIS(CFG)
1: initParams();
2: queue WQ := NULL;
3: WQ.enqueue(CFG.entrynode);
4: while (WQ 6= NULL) do
5: node := WQ.dequeue();
6: IN :=

⋃
node′∈PredNodes(node) OUTnode′ ;

7: if (node≡ IF pred THEN) then
8: tmpon_T := tmpon_F := IN ;
9: if (numOfV ars(pred) = 1) then

10: var := getPredV ar(pred);
11: predV al := EVALPRED(pred);
12: tmpon_T [var] : = IN [var] ∩ predV al;
13: tmpon_F [var] : = IN [var] ∩ (Σ∗ - predV al);
14: end if
15: tmpon_T := (tmpon_T ∪OUTon_T)∇OUTon_T ;
16: tmpon_F := (tmpon_F ∪OUTon_F)∇OUTon_F ;
17: if (tmpon_T 6⊆ OUTon_T) then
18: OUTon_T := tmpon_T ; OUTon_F := tmpon_F ;
19: WQ.enqueue(Succ(node));
20: end if
21: else
22: tmp := IN ;
23: tmp[var] := EVALEXP(exp, IN);
24: tmp := (tmp ∪OUT)∇OUT ;
25: if (tmp 6⊆ OUT) then
26: OUT := tmp;
27: WQ.enqueue(Succ(node));
28: end if
29: end if
30: end while
31: for (node≡ RETURN TRUE) do
32: return OUTnode[parameter1]

33: end for

Algorithm 1 computes the least fixed point that over-approximates
the possible values that string variables can take at any given pro-
gram point. The algorithm is worklist based, that is, it keeps track
of the CFG nodes that still needs to be processed in a worklist.

Each statement is associated with two arrays of DFAs: IN and
OUT. Both IN and OUT have one DFA for each variable and input
parameter in the validation function. Given variable v, and the IN
array for a statement, IN[v] is a DFA that accepts all string values

that variable v can take at the program point just before the exe-
cution of that statement. Similarly, OUT[v] is a DFA that accepts
all string values that variable v can take at the program point just
after the execution of that statement. The tmp array is used to store
the temporary values (i.e.,DFAs) computed by the transfer function
before joining these values with the previous ones.

The algorithm starts by initializing all of the validation function
parameter values in the IN array of the entry statement to Σ∗—
indicating that the validation function can receive any string value
as input—and by adding the CFG node for the entry statement to
the worklist.

At each iteration of the algorithm, a CFG node is extracted from
the worklist, and the transfer function for the corresponding state-
ment is computed (as described below). After computing the trans-
fer function using the IN array, the OUT array for the current state-
ment is updated using the join (union) and widening operators.
Note that assignment, join, and widening operations on IN and
OUT arrays are performed as point-wise operations. The analy-
sis converges when the worklist becomes empty, which means that
reevaluating the transfer functions would not change any of the
OUT arrays. After convergence, the OUT value for the input pa-
rameter (parameter1) at the return true statement (i.e., the
statement that represents a successful validation) is the result of
our analysis—a DFA that accepts an over-approximation of the set
of input values that the validation function identifies as valid.

Below we describe the transfer functions used to compute the
OUT array for the two main types of statements handled by the
algorithm: Assignment Statement and Conditional Statement.
Assignment Statement: In this type of statement, a variable on the
left-hand side is assigned a value of an expression on the right-hand
side. We use the function EVALEXP to compute the set of string
values that an expression can take. This function takes two inputs:
an expression on the right-hand side of an assignment and an IN
array, which is the IN array of the assignment statement where the
expression is. EVALEXP evaluates the expressions as follows:

• variable: The set of values for the variable in the IN array (i.e.,
the DFA IN[variable]) is returned.
• string-literal: A singleton set that only contains the value of the

string-literal is returned (i.e., a DFA that recognizes only the
string-literal).
• concatenate(expression1, expression2): In this case, EVALEXP

computes the concatenation of the regular languages resulting
from evaluating expression1 and expression2 and returns it as
the result (using the symbolic DFA concatenation operation dis-
cussed in [28]).
• replace(pattern, string-literal, variable): EVALEXP computes the

result of replacing all string values in IN[variable] that match
the pattern (given as a regular expression) with the string-literal.
There are two types of pattern matching: partial match and full
match. The match operation used is chosen based on the pat-
tern value as follows. 1) If the value starts with symbol “ˆ” and
ends with symbol “$”, a full match must be performed, that is,
string in IN[variable] should be replaced only if it fully matches
the regular expression in the pattern. This is accomplished by
taking the difference between the language in IN[variable] and
the language L(pattern) and adding the string-literal to the re-
sult. 2) In all other cases, a partial match is performed, where
the result is computed by using the language-based replacement
algorithm described in [28].
• call function(...): Because our analysis is intra-procedural, we

only analyze one function at a time without following function
calls. However, for the most commonly used functions, such as

REPLACE and its variations, we have constructed function models
that can be used during our analysis. More precisely, in the case
of a function call, our algorithm operates as follows: If possi-
ble, it inlines the function; otherwise, it uses the model for this
function, if one is available; and if none of these two options is
possible, it returns Σ∗, which indicates an unknown string value.

Conditional Statement: This type of statement includes all pro-
gram constructs that indicate a branching condition, such as if state-
ments, for loops, while loops, and do while loops. Conditional
statements consist of a predicate on variables and constants. Be-
cause they represent a branch in the program, unlike other state-
ments, they are followed by two statements, one on the ON_TRUE
branch and the other on the ON_FALSE branch. If the predicate
evaluates to true, the execution will continue in the ON_TRUE
branch. Otherwise, it will take the ON_FALSE branch. This behav-
ior is represented in our analysis by having two OUT arrays reflect-
ing the possible future values on each of the two branches of ex-
ecution. OUTon_T represents the values for the ON_TRUE branch,
and OUTon_F represents the values for the ON_FALSE branch. In
order to compute these arrays, our algorithm first computes, using
function EVALPRED, DFAT —the DFA that accepts the set of string
values that would make the predicate evaluate to true. Then, the al-
gorithm computes the OUTon_T array by intersecting the IN DFA
with DFAT . Conversely, to compute the OUTon_F array, our algo-
rithm intersects the IN DFA with the complement of DFAT .

Function EVALPRED recursively traverses the predicate while con-
structing the DFA for each subexpression in the predicate. Logi-
cal operations are handled using automata union, intersection and
complement operations, while all other expressions are mapped to
regular expressions [1]. Note that our string analysis algorithm is
not a relational analysis because we keep track of values of each
string variable separately. This means that we cannot precisely rep-
resent predicates on multiple variables, and the function EVALPRED

only handles predicates that contain a single variable. If there is a
branch condition on multiple variables, our algorithm loses preci-
sion because it loses path sensitivity at that branch location (see line
9 in Algorithm 1). It is worth noting that, in our experiments, this
did not cause precision loss since we have not encountered branch
conditions with multiple variables in the programs used in our ex-
perimentation.

3.3 Inconsistency Identification and Report-
ing

At the end of the automata-based string analysis phase, we obtain
two automata for each input field i: Ac(i) (client side) and As(i)
(server side), where

• L(Ac(i)) (the language accepted by automaton Ac(i)) is an over-
approximation of the set of string values that are accepted by the
client-side input validation function for input field i, and
• L(As(i)) (the language accepted by automaton As(i)) is an over-

approximation of the set of string values that are accepted by the
server-side input validation function for input field i.

Using Ac(i) and As(i), we construct two new automata:

• As−c(i) where L(As−c(i)) = L(As(i))− L(Ac(i)), and
• Ac−s(i) where L(Ac−s(i)) = L(Ac(i))− L(As(i)).

We call As−c(i) and Ac−s(i) difference signatures, where:

• L(As−c(i)) contains strings that are accepted by the server side
but rejected by the client side, and

• L(Ac−s(i)) contains strings that are accepted by the client side
but rejected by the server side.

Let us now consider various scenarios for the difference signa-
tures. If L(As−c(i)) = L(Ac−s(i)) = ∅, this means that our
analysis could not identify any difference between the client- and
server-side validation functions, so we have no errors to report.
Note that, due to over-approximation in our analysis, this does not
mean that the client and server-side validation functions are proved
to be equivalent. It just means that our analysis could not identify
an error.

If L(As−c(i)) 6= ∅, there might be an error in the server-side
validation function. A server-side input validation function should
not accept a string value that is rejected by the client-side input
validation function—as we discussed earlier, this would be a secu-
rity vulnerability that should be reported to the developer. Due to
over-approximation in our analysis, however, our result could be a
false positive. To prevent generating false alarms, we validate the
error as follows. We generate a string s ∈ L(As−c(i)) and execute
both the client and server-side input validation functions by provid-
ing s as the input value for the input field i. If client-side function
rejects the string, and server-side function accepts it, then we are
guaranteed that there is a problem with the application and report
the string s as a counter-example to the developer. If we cannot
find such a string s, then we do not report an error.

We also check if L(Ac−s(i)) 6= ∅ and, if so, we again gen-
erate a string to demonstrate the inconsistency between the client
and server-side validation functions. Note that client-side valida-
tion functions accepting a value that the server rejects may not be
as severe a problem as their counterpart. It is nevertheless valu-
able to report this kind of inconsistencies because fixing them can
improve the performance and response time of the web application
and prevent client-side vulnerabilities [19].

4. IMPLEMENTATION
In this section, we present the details of our implementation of

ViewPoints and describe the various modules of the tool that per-
form the steps of the technique discussed in Section 3.

4.1 Input Validation Extraction

4.1.1 Web Deployment Descriptor
Each web application must provide a Web deployment descrip-

tor file, web.xml, as specified in the Java EE specification [7].
In this first step, our tool analyzes this file to understand and store
references to the different components used within the web appli-
cation, along with the paths to various library and framework con-
figuration files. It then performs framework specific analysis of
this information to discover how input fields of application forms
are validated on both the client side and the server side. Upon dis-
covery of this information, our tool gets a reference to the client-
and server-side validation functions and proceeds with the valida-
tion code extraction from both sides. Our current implementation
handles two popular J2EE frameworks: Struts and Spring MVC.
Based on our experience, it could be extended to handle additional
frameworks with relatively low effort.

4.1.2 Server-Side Extraction
Once our tool knows the specific server-side Java functions that

are used to validate each input (i.e., form field), it accesses the cor-
responding class files using the Soot framework (http://www.
sable.mcgill.ca/soot/) in order to analyze such validation

functions. Because of the limitations of our current implementa-
tion, we had to apply several semi-automated transformations to
the validation functions before being able to analyze them in isola-
tion. Here is the list of transformations that our tool applies to each
validation method (note that most of this transformations could be
eliminated with further engineering) :

Input parameter re-writing: The function is transformed to re-
move all the formal arguments that are not of interest for our
analysis. This allows us to have a simpler function and ignore
many of the indirections introduced by the framework.

Function inlining and modeling: Our analysis inlines string op-
erations performed by library functions. For instance, the valid-
ateEmail routine in the motivating example originally used
the isBlankOrNullmethod from the library class Generic-
Validator. This function was inlined and corresponds to the
expression (val == null || val.trim().length == 0).

Parameter inlining: Some of the validation routines might use
parameters that are read from a configuration file. For example,
the developer can specify a regular expression in the configura-
tion that the validation function matches against the input. For
such functions, our tool plugged the value of the parameter at all
the corresponding uses inside the function.

After the above transformations are performed, our tool invokes
the constant propagation and dead code elimination phases from the
Soot framework to obtain a concise CFG for the validation function
under analysis. These CFGs have two kinds of exit nodes—one that
returns true, leading to the successful validation of the input, and
the other one that returns false, leading to the rejection of the
input. Our tool first uses this CFG to compute control and data de-
pendences, which are then used to synthesize the PDG for the func-
tion. Upon the creation of the PDG, forward slicing is performed
from the variable representing the input parameter being validated.
This static slice contains all of the operations that are performed on
the input variable and marks those that are string operations. Then,
our tool performs backward slicing (on this forward slice) starting
from the accepting nodes (i.e.,return true statements) to cap-
ture the string operations involved in the successful validation. The
resulting slice is a CFG with only string operations performed on
the validated input and is saved in an intermediate XML format
later used by the differential string analysis phase.

4.1.3 Client-Side Extraction
The client-side validation functions extracted by our tool from

the framework configuration files pose a different challenge to our
analysis. These functions do not take as input the value of the single
field being validated, but rather a bundle of the values of all of the
fields in a web form. This creates a problem for our analysis, as we
want to extract the summary validation function for a single field,
not the whole web form. As discussed in Section 3.1.2, we solve
this problem by executing the validation function using different
input values and extracting the validation code for the target field
using dynamic slicing.

To collect the traces later used for dynamic slicing, our tool uses
HtmlUnit [8], which is a browser simulator based on Rhino [15]—
a JavaScript interpreter. Using HtmlUnit, our tool can simulate the
process of filling out a form (using values selected from a pool
based on the type of the targeted form fields) and submitting it.
During this simulation, our tool instruments the interpreter to track
all of the JavaScript statements that operate on or test the content
of the target fields. The tool then outputs these statements and all

http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/

other statements on which they depend. If there are function calls
for non-native JavaScript functions, our tool inlines them so that
the final code consists of only one validation function for the target
field that ends with a “return true” statement.

For data that is coming from outside the syntactic scope of the
validation function—such as masks that are used in some of the val-
idation functions we encountered—our tool takes their values from
the application execution trace and plugs them into the validation
function before performing dynamic slicing.

4.2 Input Validation Modeling Using DFAs
Our tool loads the slices extracted from both client- and server-

side validation functions and builds DFAs of string operations for
these, as discussed in Section 3. Because more than one validation
function can be associated with one field in the validation config-
uration, all the associated functions will be called separately for
validating that field: if any of them rejects the input, then the input
will be rejected. To correctly model this situation, our tool com-
putes the intersection of all of the DFAs for all such functions (i.e.,
the resulting DFA accepts the intersection of the languages of the
individual DFAs).

All the string analysis operations on the DFAs are performed by
invoking the StrangerAutomaton library (http://www.cs.ucsb.
edu/~vlab/stranger/), which internally uses the Mona tool to
represent the DFAs (http://www.brics.dk/mona/).

4.3 Inconsistency Identification
In this step, for every input field i, our tool gets the two DFAs,

one from the client side, and the other from the server side, and
generates two difference signatures Ac−s(i) and As−c(i), which
are DFAs that accept languages that correspond to the set differ-
ences between the languages of the client and server-side DFAs
(as explained in Section 3). For each of the generated signatures
that are not empty, our tool then tries to produce a counterexam-
ple. If the counterexample is found, the mismatch is confirmed and
reported to the developers.

5. EMPIRICAL EVALUATION
To assess the usefulness of our approach, we used our imple-

mentation of ViewPoints to perform an empirical evaluation on a
set of real-world web applications. In our study, we investigated
the following two research questions:

RQ1: Can ViewPoints identify inconsistencies in client- and server-
side input validation functions (or establish equivalence between
them otherwise)?

RQ2: Is ViewPoints efficient enough to analyze real-world web
applications within acceptable time and memory usage limits?

In the rest of this section, we will first describe the details of the
experimentation performed for investigating RQ1 and RQ2, and
then discuss our results.

5.1 Experimental Subjects
For our experiments, we selected seven real-world web applica-

tions from two open source code repositories: Sourceforge (http:
//sourceforge.net) and Google Code (http://code.google.
com). Because our current implementation can handle web appli-
cations written using Java EE frameworks, we searched the two
repositories for web applications with these characteristics. In ad-
dition, we discarded projects with a small user base or with a low
activity level, so as to privilege web applications that were more
likely to be widely used and well maintained.

Table 1: Web applications used in our empirical evaluation.
Name URL

JGOSSIP http://sourceforge.net/projects/jgossipforum/
VEHICLE http://code.google.com/p/vehiclemanage/
MEODIST http://code.google.com/p/meodist/
MYALUMNI http://code.google.com/p/myalumni/
CONSUMER http://code.google.com/p/consumerbasedenforcement
TUDU http://www.julien-dubois.com/tudu-lists
JCRBIB http://code.google.com/p/jcrbib/

Table 1 shows the list of web applications that we used for our
experimentation and the URL from which they were obtained. The
first four applications in the list are written using the Struts frame-
work (http://struts.apache.org/): JGOSSIP is a messag-
ing board application; VEHICLE is an application to manage vehi-
cles owned by a company; MEODIST is an application for man-
aging information about a club members; and MYALUMNI is a
social network application for school alumni. The last three ap-
plications are written using the Spring MVC framework (http:
//www.springsource.org/): CONSUMER is a customer rela-
tionship management application; TUDU is an on-line application
for managing todo lists; and JCRBIB is a virtual library applica-
tion that supports user collaboration. Based on their descriptions,
these web applications cover a wide spectrum of application do-
mains. Moreover, because of the way they were selected, most of
these applications are popular and widely used in practice. JGOS-
SIP, for instance, has been downloaded almost 30,000 times from
its Sourceforge page.

5.2 Experimental Procedure and Results
For conducing our experiments, we used a Ubuntu Linux ma-

chine with an Intel Core Duo 2.4Ghz processor and 2GB of RAM
running Java 1.6. To collect data to answer RQ1 and RQ2, we
ran ViewPoints on the web applications considered. For each web
application, ViewPoints first analyzed the application’s configura-
tion to identify its inputs and corresponding client- and server-side
validation functions. It then built client- and server-side summary
validation functions for each input.

Table 3 shows relevant data for this part of the analysis. The
first column in the table lists the application name, followed by
the number of forms extracted (Frm) and the total number of in-
puts across all forms (Inputs). Column V IC (resp., V IS) lists the
number of inputs for which a client-side (resp., server-side) val-
idation function is specified in the configuration. Similarly, col-
umn ETC (resp., ETS) lists the time taken, in seconds, to extract
the summary validation functions for these inputs on the client side
(resp., server side). For example, web application CONSUMER con-
tains 3 forms, for a total of 21 inputs. Of these inputs, 14 are vali-
dated on the client side, whereas all of 21 of them are validated on
the server side. It took 68.4 and 1.1 seconds to extract the summary
validation functions on the client side and server side, respectively.
Note that the time required to compute the client-side summary
validation functions is much higher than the time to extract server-
side summary validation functions. This difference is due to the
additional time required to perform dynamic slicing on the client
side, which in turn requires ViewPoints to load and run JavaScript
functions in the browser.

After building client- and server-side summary validation func-
tions for each input, ViewPoints constructed the corresponding
DFAs, as described in Section 3. Table 2 shows details about this

http://www.cs.ucsb.edu/~vlab/stranger/
http://www.cs.ucsb.edu/~vlab/stranger/
http://www.brics.dk/mona/
http:// sourceforge.net
http:// sourceforge.net
http://code.google.com
http://code.google.com
http://struts.apache.org/
http://www.springsource.org/
http://www.springsource.org/

Table 2: Relevant data on the input validation modeling step of the technique.
Subject Client-Side DFA Server-Side DFA

min max avg min max avg
Avg size (mb) S B S B S B Avg size (mb) S B S B S B

JGOSSIP 6.03 4 10 35 706 6 39 6.05 4 24 35 706 6 41
VEHICLE 4.83 4 24 7 41 5 26 4.84 4 24 7 41 5 26
MEODIST 5.67 5 25 5 25 5 25 5.67 5 25 5 25 5 25
MYALUMNI 3.17 4 10 4 10 4 10 3.16 3 24 5 25 5 25
CONSUMER 5.34 4 10 17 132 5 25 5.34 4 24 17 132 7 41
TUDU 6.12 4 10 4 10 4 10 6.12 3 24 23 264 8 68
JCRBIB 5.37 4 10 4 10 4 10 5.38 5 25 5 25 5 25

Table 3: Relevant data on the input validation extraction step
of the technique.

Subject Frm Inputs V IC ETC (s) V IS ETS (s)

JGOSSIP 25 83 74 329.80 83 4.38
VEHICLE 17 41 41 155.48 41 2.04
MEODIST 18 62 62 192.20 62 1.93
MYALUMNI 46 141 0 0.00 141 4.28
CONSUMER 3 21 14 68.40 21 1.10
TUDU 3 11 0 0.00 11 0.78
JCRBIB 21 45 0 0.00 45 1.51

part of the analysis. For each application, and both for the client
side and the server side, the table shows: the average size of the
DFAs in megabytes, followed by the minimum, maximum, and av-
erage number of states (column S) and BDD nodes (column B).
(The number of BDD nodes represents the size of the symbolic
representation of the DFA’s transition relation.) As an example,
the application TUDU has DFAs with an average of 4 states and 10
BDD nodes for the client side, whereas it has DFAs with an average
of 8 states and 68 BDD nodes for the server side. Note that, when
client-side validation is absent for an input, the DFA for that input
accepts the language Σ∗. Hence, TUDU has a client-side DFA even
though it has no client-side validation code (see Tables 2 and 3).

Finally, ViewPoints compared client- and server-side DFAs to
identify possible inconsistencies among them. The results of this
comparison for our subjects is shown in Table 4. For each applica-
tion, the table reports the time it took ViewPoints to perform dif-
ferential string analysis, in milliseconds, and the number of inputs
with identified (and confirmed) inconsistencies. Specifically, col-
umn AC−S shows the number of inputs for which the client side ac-
cepts strings that would be rejected by the server side, whereas col-
umn AS−C shows the opposite. For JGOSSIP, for instance, the dif-
ferential string analysis took around 3 seconds and identified nine
client-side inconsistencies and two server-side inconsistencies.

5.3 Discussion
As the results in Table 4 show, ViewPoints was able to find both

types of inconsistencies: client checks that are more strict than
server checks and vice versa. We manually checked all the results
and 1) verified that all identified inconsistencies correspond to ac-
tual inconsistencies (i.e.,our tool did not generate any false posi-
tives), and 2) confirmed that there are no inconsistencies other than
those found by our automated analysis (i.e., our tool did not gen-
erate any false negatives). For JGOSSIP, in particular, ViewPoints
found two instances of the inconsistency that we presented in our
motivating example. As we explain in Section 2, such inconsis-
tencies represent actual vulnerabilities in the code that a malicious
user may be able to exploit. For the remaining applications, four
out of six contain input validation inconsistencies on the client side.

Table 4: Data on the inconsistency identification step of the ap-
proach and overall results.

Subject T ime (ms) AC−S AS−C

JGOSSIP 3220 9 2
VEHICLE 1486 0 0
MEODIST 1745 0 0
MYALUMNI 2853 141 0
CONSUMER 1019 7 0
TUDU 595 11 0
JCRBIB 1168 45 0

A special case is that of MYALUMNI, which has 141 inputs that are
inconsistently validated at the client side and server side. For this
application, the developers provided no validation whatsoever on
the client side, and thus all the 141 inputs that are checked on the
server side are inconsistently validated. Although these results are
preliminary, and further experimentation would be needed to con-
firm them, they provide strong supporting evidence for answering
RQ1: ViewPoint is indeed able, at least for the cases considered, to
identify inconsistencies in client- and server-side input validation
functions.

RQ2 relates to the efficiency and practicality of the analysis.
From Table 3, we can see that the extraction phase of ViewPoints
took between 0.78 and 4.38 seconds for the server-side validation
functions. Although for the client-side functions the numbers are
higher, due to the more expensive analysis performed on the client
side (see Section 5.2), the maximum total time needed to analyze
one of the web applications considered is less than six minutes.

Table 2 illustrates the space cost of ViewPoints. As the table
shows, the space needed to store the DFAs is negligible, as it is less
than seven megabytes in all cases. Finally, Table 4 shows the time
needed to perform the comparison of two DFAs. Also in this case,
the time it takes ViewPoints for the comparison is in the order of
a few seconds and, thus, negligible. We can therefore provide a
positive answer to RQ2 as well.

Overall, these results provide preliminary, yet clear evidence that
ViewPoints can be both practical and useful.

6. RELATED WORK
Software vulnerabilities are a significant problem. Therefore,

there exists a wide range of solutions that attempt to address the
problem from different angles. In the following discussion, we
mainly focus on the detection of web application vulnerabilities.
Techniques to detect web application vulnerabilities can be divided
into dynamic and static program analysis techniques. Dynamic
analysis techniques (e.g., [10, 16, 20]) perform their computations
while actually executing the analyzed code. As a result, these tech-
niques do not generate false positives, since every detected error
path corresponds to a true path that the program can take at run-

time. The disadvantage of dynamic scanners is that they experience
problems regarding the coverage of all possible paths through the
program. The number of these paths is generally unbounded, and
grows exponentially with each branch in the program. Hence, it
is easy to miss vulnerabilities due to program paths that were not
taken into account.

In this paper, we focus on the detection of security flaws by
means of (mainly) static code analysis. This has the advantage that
the whole code base is checked, but the drawback that the anal-
ysis may report warnings for correct code (i.e., false positives).
There are a number of approaches that deal with static detection
of web application vulnerabilities. Xie and Aiken [27] addressed
the problem of statically detecting SQL injection vulnerabilities in
PHP scripts by means of a three-tier architecture. In this architec-
ture, information is computed bottom-up for the intra-block, intra-
procedural, and inter-procedural scope. As a result, their analysis
is flow-sensitive and inter-procedural. This is comparable in power
to Pixy [13]. Both systems use traditional data flow analysis to de-
termine whether unchecked user inputs can reach security-sensitive
functions (so-called sinks) without being properly checked. How-
ever, they do not calculate any information about the possible strings
that a variable might hold. Thus, they can neither detect all types
of vulnerabilities (such as subtle SQL injection bugs) nor determine
whether sanitization routines work properly.

Static analysis of strings has been an active research area, with
the goal of finding and eliminating security vulnerabilities caused
by misuse of string variables. String analysis focuses on statically
identifying all possible values of a string expression at a program
point, and this knowledge can be leveraged to eliminate vulnerabil-
ities such as SQL injection and XSS attacks. In [14], multi-track
DFAs, known as transducers, are used to model replacement op-
erations in conjunction with a grammar-based string analysis ap-
proach. The resulting tool has been effective in detecting vulner-
abilities in PHP programs. Wassermann et al. [25, 26] propose
grammar-based static string analyses to detect SQL injections and
XSS, following Minamide’s approach. A more recent approach in
static string analysis has been the use of finite state automata as a
symbolic representation for encoding possible values that string ex-
pressions can take at each program point [2, 28]. In this approach,
the values of string expressions are computed using a fixed point
computation. Complex string manipulation operations, such as re-
placement, can also be modeled with the automata representation.
In order to guarantee convergence in automata-based string analy-
sis, several widening operators have been used [3,6,28]. Constraint-
based (or symbolic-execution-based) techniques represent a third
approach for static string analysis. Such techniques have been used
for the verification of string operations in JavaScript [18] and the
detection of security flaws in sanitization libraries [12].

Previous work on string analysis for finding bugs and security
vulnerabilities in web applications, including our work in [1], con-
centrates on one side of the web application—either the client or
the server—and assumes the existence of a specification that de-
fines (models) the set of acceptable and malicious string values.
The purpose of the analysis is then to determine whether the appli-
cation code, and its sanitization functions, properly enforce these
specifications. ViewPoints is different in that we do not assume
that such specifications are available. Instead, we compare the
input constraints enforced by both the client-side and the server-
side code. Differences in these constraints are taken as indications
of problems. A somewhat related idea was presented in a system
called NoTamper [4]. In that paper, the authors analyze client-side
script code to generate test cases that are subsequently used as in-
puts to the server side of the application. Since the approach re-

lies on dynamic (black-box) testing, it can suffer from limited code
coverage. In a recent follow up paper [5], the same authors propose
WAPTEC, which uses symbolic execution of the server code to
guide the test case generation process and expand coverage. While
the overall goal of WAPTEC is similar to ours, the techniques used
to achieve this goal are quite different. For example, WAPTEC uses
guided, dynamic analysis on the server side to generate a series of
possible exploit inputs. ViewPoints, on the other hand, uses static
analysis to model the server code. This potentially allows View-
Points to find more vulnerabilities than WAPTEC, whose effective-
ness depend on the coverage achieved by its dynamic analysis. In
addition, ViewPoints uses an automata-based symbolic string anal-
ysis that over-approximates loops and does not bound the lengths
of the strings; conversely, WAPTEC extracts client-side constraints
from JavaScript code using Kudzu [18], an existing technique in
which both loops and string lengths are bounded during the analy-
sis.

7. CONCLUSION
Because many web applications store sensitive user informa-

tion and are easily accessible, they are a common target of attack-
ers. Some of the most insidious attacks against web applications
are those that take advantage of input validation vulnerabilities—
inadequate input checks that let attackers submit malicious inputs
to an application, often with catastrophic consequences. Unfortu-
nately, automatically checking validating functions would require a
complete specification of the legal inputs for an application, which
is rarely available. In this paper, we present ViewPoints, a novel
technique that leverages differential string analysis to identify po-
tentially erroneous or insufficient validation of user inputs in web
applications. ViewPoints is based on the insight that developers
typically perform redundant input validation on the client side and
server side of a web application, and that it is therefore possible to
use the validation performed on one side as a specification for the
validation performed on the other side. ViewPoints operates by au-
tomatically extracting client- and server-side input validation func-
tions, modeling them as deterministic finite automata, and compar-
ing client- and server-side automata to identify and report incon-
sistencies between the two sets of checks. To assess the efficiency
and effectiveness of ViewPoints, we implemented it for web appli-
cations built using Java EE frameworks and used it to analyze a set
of real-world web applications. The results of this initial evalua-
tion are promising and motivate further research in this direction:
ViewPoints was able to automatically identify a number of incon-
sistencies in the input validation checks of the web applications
we analyzed. In addition, the analysis was extremely fast, which
demonstrates the practical applicability of the approach.

There are several possible directions that we are considering for
future work. In the short term, we will extend our implementa-
tion so that it can handle a larger number of types of web appli-
cations (e.g., applications written in different languages or with
validation functions that are not explicitly identified in the appli-
cation’s configuration) and perform a more extensive set of empir-
ical studies. We will also investigate code synthesis techniques for
automatically fixing the input validation inconsistencies identified
by our approach; after ViewPoints has identified one or more in-
consistencies, it could use the information in the string automata
to guide the automatic construction of additional validation code to
be added to the client, the server, or both. One more general direc-
tion for future work has to do with the solution space for the string
analysis on which ViewPoints relies. There are many dimensions
that characterize string analysis techniques: (1) static vs. dynamic,
(2) grammar-based vs. automata-based, (3) bounded path vs. un-

bounded path, (4) bounded domain vs. unbounded domain, (5) re-
lational vs. non-relational, (6) size based vs. value based, and so
on. In our current approach, we consider only a specific solution in
this space. In the future, we will study the many trade-offs between
different approaches (e.g., between a sound approach, which gener-
ates no false negatives, and a complete approach, which generates
no false positives) and investigate whether a different approach may
be advantageous in terms of efficiency, precision, expressiveness,
or ability to compare resulting models.

8. ACKNOWLEDGMENTS
This research was supported in part by NSF grants CCF-0916112

and CNS-1116967 to UCSB and NSF grants CCF-0964647 and
CNS-1117167 to Georgia Tech. Muath Alkhalaf is funded in part
by a fellowship from King Saud University.

9. REFERENCES
[1] M. Alkhalaf, T. Bultan, and J. L. Gallegos. Verifying

client-side input validation functions using string analysis. In
Proceedings of the 34th International Conference on
Software Engineering (ICSE), 2012.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing Static
and Dynamic Analysis to Validate Sanitization in Web
Applications. In Proceedings of the Symposium on Security
and Privacy (S&P), 2008.

[3] C. Bartzis and T. Bultan. Widening arithmetic automata. In
R. Alur and D. Peled, editors, Proceedings of the 16th
International Conference on Computer Aided Verification
(CAV 2004), volume 3114 of Lecture Notes in Computer
Science, pages 321–333. Springer-Verlag, July 2004.

[4] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. Venkatakrishnan. NoTamper: Automatic, Blackbox
Detection of Parameter Tampering Opportunities in Web
Applications. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2010.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan.
WAPTEC: Whitebox Analysis of Web Applications for
Parameter Tampering Exploit Construction. In Proceedings
of the ACM Conference on Computer and Communications
Security (CCS), 2011.

[6] T.-H. Choi, O. Lee, H. Kim, and K.-G. Doh. A Practical
String Analyzer by the Widening Approach. In Proceedings
of the 4th Asian Symposium on Programming Languages and
Systems (APLAS), pages 374–388, 2006.

[7] N. Coward and Y. Yoshida. Java Servlet Specification
Version 2.4. Technical report, Nov. 2003.

[8] Gargoyle Software. HtmlUnit: headless browser for testing
web applications.
http://htmlunit.sourceforge.net/.

[9] W. Halfond, S. Anand, and A. Orso. Precise Interface
Identification to Improve Testing and Analysis of Web
Applications. In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA), pages 285–296, 2009.

[10] W. Halfond, A. Orso, and P. Manolios. WASP: Protecting
Web Applications Using Positive Tainting and Syntax-Aware
Evaluation. IEEE Transactions on Software Engineering
(TSE), 34(1):65–81, 2008.

[11] W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL Injection Attacks and Countermeasures. In Proceedings

of the International Symposium on Secure Software
Engineering, 2006.

[12] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and Precise Sanitizer Analysis with Bek. In
Proceedings of the 20th Usenix Security Symposium, 2011.

[13] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper). In Proceedings of the IEEE Symposium on
Security and Privacy, 2006.

[14] Y. Minamide. Static approximation of dynamically generated
web pages. In Proceedings of the 14th International World
Wide Web Conference (WWW), pages 432–441, 2005.

[15] Mozilla Foundation. Rhino: Javascript for Java.
http://www.mozilla.org/rhino/.

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications Using
Precise Tainting. In Proceedings of the 20th IFIP
International Information Security Conference (SEC), 2005.

[17] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysis
of the Dynamic Behavior of JavaScript Programs. In
Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation (PLDI),
pages 1–12, 2010.

[18] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A Symbolic Execution Framework for JavaScript.
In Proceedings of the 31st IEEE Symposium on Security and
Privacy (Oakland), 2010.

[19] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax:
Systematic discovery of client-side validation vulnerabilities
in rich web applications. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2010.

[20] D. Scott and R. Sharp. Abstracting Application-Level Web
Security. In Proceedings of the 11th International World
Wide Web Conference (WWW), 2002.

[21] The OWASP Foundation. Data Validation, 2010. http://
www.owasp.org/index.php/Data_Validation.

[22] The OWASP Foundation. Top Ten Most Critical Web
Application Vulnerabilities, 2010. http://www.owasp.
org/documentation/topten.html.

[23] The OWASP Foundation. Validation Performed in Client,
2010. http://www.owasp.org/index.php/
Validation_performed_in_client.

[24] F. Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, 3:121–189, 1995.

[25] G. Wassermann and Z. Su. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In
Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 32–41, 2007.

[26] G. Wassermann and Z. Su. Static Detection of Cross-site
Scripting Vulnerabilities. In Proceedings of the 30th
International Conference on Software Engineering (ICSE),
pages 171–180, 2008.

[27] Y. Xie and A. Aiken. Static Detection of Security
Vulnerabilities in Scripting Languages. In Proceedings of the
15th USENIX Security Symposium (USENIX-SS), 2006.

[28] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic String
Verification: An Automata-based Approach. In Proceedings
of the 15th International SPIN Workshop on Model Checking
Software (SPIN), pages 306–324, 2008.

http://htmlunit.sourceforge.net/
http://www.mozilla.org/rhino/
http://www.owasp.org/index.php/Data_Validation
http://www.owasp.org/index.php/Data_Validation
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/documentation/topten.html
http://www.owasp.org/index.php/Validation_performed_in_client
http://www.owasp.org/index.php/Validation_performed_in_client

	Introduction
	Motivating Example
	Our Approach: Differential String Analysis
	Input Validation Extraction
	Input Validation Identification
	Input Validation Analysis

	Input Validation Modeling Using DFAs
	Inconsistency Identification and Reporting

	Implementation
	Input Validation Extraction
	Web Deployment Descriptor
	Server-Side Extraction
	Client-Side Extraction

	Input Validation Modeling Using DFAs
	Inconsistency Identification

	Empirical Evaluation
	Experimental Subjects
	Experimental Procedure and Results
	Discussion

	Related Work
	Conclusion
	Acknowledgments
	References

