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Abstract—Understanding a program and the features it pro-
vides is essential for a number of software engineering tasks,
including refactoring, debugging, and debloating. Unfortunately,
program understanding and feature identification are also ex-
tremely challenging and time consuming activities. To support
developers when they perform these activities, we propose
FEATUREFINDER, an approach that aims to identify and un-
derstand the features of a program by analyzing its executions.
Specifically, we defined our approach for Android apps, given
their widespread use. Given an app, FEATUREFINDER generates
traces that capture different properties of the app executions
through instrumentation. It then leverages the user events in
the trace to split the trace into segments, and clusters these
segments based on their characteristics, using a classifier. Each
identified cluster indicates a feature exercised in the execution.
Finally, FEATUREFINDER suitably labels each identified cluster,
so as to provide a human-readable description of the corre-
sponding feature. We performed a case study in which we used
FEATUREFINDER to identify features in two executions of the K-
9 MAIL app. In the study, FEATUREFINDER was able to correctly
identify 6 of the 11 manually identified features, which we believe
is an encouraging result and motivates further research.

Index Terms—Feature identification, program understanding,
trace analysis

I. INTRODUCTION

Whether developers need to debug, refactor, maintain, or

generate documentation for a program, it is essential that

they understand the program and the features it provides. In

this paper, in particular, we are interested in the problem of

identifying and understanding the features of a program by

analyzing its executions. There are a number of existing ap-

proaches that instrument a program, generate execution traces

that contain useful information, and analyze the generated

traces [1]. To allow developers to know what exactly happened

within an execution, however, these traces typically contain a

great deal of low-level information (e.g., methods called and

user events). Unfortunately, analyzing and understanding this

kind of low-level traces is a time-consuming and complex task.
To help developers with this task, and let them better

understand program executions and the features exercised

therein, we propose a new technique called FEATUREFINDER.

FEATUREFINDER is specifically designed to target Android

apps, as they are increasingly widespread and have specific

characteristics that can be leveraged when analyzing their

executions. In particular, mobile apps (and Android apps in

particular) are event-based and organize their features around

the concepts of screens (activities) and user events.

In our context, a feature is a sequence of user events

that exercise some functionality of an app. For example, the

login feature of an app may consist of the following user

events: clicking on the username input text box, typing a

username, clicking on the password input text box, typing

a password, and clicking on the login button. To identify

these so-defined features for an app A, FEATUREFINDER

instruments A so that, when executed, A generates a trace

that contains specific runtime information. Then, for each

generated trace, FEATUREFINDER identifies the user events in

the trace and splits the trace into segments separated by user

events. At this point, FEATUREFINDER uses a clustering al-

gorithm to group consecutive trace segments iteratively, based

on the runtime information associated with the segments. At

the end of this step, each cluster represents an identified

feature. FEATUREFINDER also generates a human-readable

label for each cluster (i.e., feature) and outputs clusters and

corresponding labels.

To evaluate FEATUREFINDER, we implemented it in a

prototype tool and performed a case study in which we used

the tool to identify the features in two execution traces of

the K-9 MAIL app. In the study, FEATUREFINDER was able

to correctly identify 55% of the features manually identified

in the traces considered. These results, albeit preliminary, are

promising and show that FEATUREFINDER is a potentially

effective technique for identifying features in app executions.

Moreover, although the current definition of FEATUREFINDER

is Android-specific, the basic approach should be easily appli-

cable to other GUI-based applications (e.g., web applications).

This paper makes the following contributions:

• An approach for identifying features of an app by ana-

lyzing its execution traces.

• An implementation of the approach for the Android

platform (publicly available at https://sites.google.com/

view/featureidentification).

• A case study that shows the potential usefulness of our

approach.

II. APPROACH

In this section, we present FEATUREFINDER, an approach

for extracting features from execution traces. Figure 1 provides

a high-level overview of FEATUREFINDER. As the figure

shows, the approach takes as input an app and operates in

five steps: instrumentation, execution, splitting, clustering,



Fig. 1. High-level overview of FEATUREFINDER.

and labeling. The output of the approach are the features

exercised by a user execution of the app. We now elaborate

on FEATUREFINDER’s steps.

A. Instrumentation and Execution
In the instrumentation step, FEATUREFINDER instruments

the app to capture certain execution properties. This infor-

mation is stored in an execution trace and is used in later

steps to identify the set of features exercised during execution.

Figure 2 illustrates, in the form of a grammar, the traces

generated by FEATUREFINDER. The approach captures several

execution properties: call stack at each method call, activities

and fragments traversed,1 and user events. We chose these

properties as we believe they capture essential information

about a user execution and the features it exercises.
Specifically, FEATUREFINDER captures call stacks (MC-

Stack) to identify method calls (MCall) and their depth. For

each method call, the approach extracts package (Package-
Name), class (ClassName), and method (MethodName) names

associated with the call. It also records the names of the ac-

tivities (ActName) and fragments (FragName) explored during

the execution. For each activity/fragment, FEATUREFINDER

records starting point (ActStart/FragStart) and ending point

(ActEnd/FragEnd). FEATUREFINDER also records user events

(UserEvent), where a user event can be either a touch event

(TouchEvent) or a keyboard event (KeyBoardEvent). A touch

event is associated with a widget (Widget) (e.g., a button), for

which FEATUREFINDER records, if available, id (WidgetId),

associated text (WidgetText), and content description (Widget-
ContentDesc). A keyboard event is associated with a key label

(KeyLabel).
In the execution step, FEATUREFINDER uses the instrumen-

tation to produce a trace that captures the execution properties

observed while a user is interacting with the app.

B. Splitting and Clustering
FEATUREFINDER uses a bottom-up approach to identify

features within a trace. Intuitively, the approach recognizes

1In Android apps, activities and fragments are basically screens of the app.

Tr -> E Tr | epsilon
E -> { MCStack } | ActStart | FragStart | ActEnd | FragEnd

| UserEvent
MCStack -> MCall MCStack | epsilon
MCall -> ( PackageName ClassName MethodName )
ActStart -> ActName *as*
FragStart -> FragName *fs*
ActEnd -> ActName *ae*
FragEnd -> FragName *fe*
UserEvent -> < *tevent* Widget > | < *kbevent* KeyLabel >
Widget -> WidgetId WidgetText WidgetContentDesc

Fig. 2. Trace grammar.

features by grouping parts of the trace together. More pre-

cisely, FEATUREFINDER recognizes features in its splitting

and clustering steps.

In the splitting step, the approach divides the trace into seg-
ments based on the occurrence of touch events. We use these

events to determine segments because we believe that features

are usually invoked through an explicit action performed by

the user (e.g., clicking on the login button).

After this step, the clustering step groups consecutive

segments that are deemed to be related. We use the term

cluster to refer to a group of segments. The algorithm

that FEATUREFINDER uses to cluster segments is shown in

Algorithm 1. The algorithm follows a “snowball-growing”

principle; that is, it keeps grouping the current segment with

the subsequent one if the classifier directs it to merge (i.e., to

grow the “snowball”). Specifically, the algorithm starts with an

initialization step (lines #1–3) and then keeps iterating over the

segments in the trace (lines #4–14). Each iteration identifies

one cluster. At line #5, the algorithm creates a new cluster,

which contains the first available segment. It then processes

subsequent segments (lines #6–11) and tries to merge these

segments into the current cluster using the classifier. The

algorithm stops grouping segments when either the classifier

(described below) returns a don’t merge as an answer or the

trace has been fully processed. The list of computed clusters

is the output of the algorithm, where each cluster indicates a

feature in the app.

The classifier used by FEATUREFINDER determines whether

two segments should be clustered based on the execution



Algorithm 1 Clustering algorithm.
Input: uts: list of segments

classifier: classifier to group segments
Output: clusters: list of grouped segments
1: clusters← {}
2: int ut size← uts.size()
3: int i← 0
4: while true do
5: int begin← i
6: for i← begin + 1; i < ut size; i + + do
7: segment0 ← MERGE(uts, begin, i− 1)
8: segment1 ← uts.get(i)
9: label← classifier.classify(segment0, segment1)

10: if label ==“don’t merge” then
11: break
12: clusters.add(MERGE(uts, begin, i− 1))
13: if i == ut size then
14: break
15: return clusters

properties contained within the segments. To do so, the

classifier uses a feature vector that contains the 29 numeric

features shown in Table I, which encode how two segments

relate to each other. (We identified these features based on

our expertise and preliminary evaluation. In future work, we

plan to investigate how individual features contribute to the

classification accuracy and to possibly consider additional

features.) Given the feature vector for a pair of segments,

the classifier predicts whether the segments should be merged

(“merge”) or not (“don’t merge”).

C. Labeling

In this step, FEATUREFINDER associates to each identified

cluster C a label that is meant to provide a human-readable

description of the feature represented by C. To compute the

label for C, the approach first collects the names of the

activities and fragments present in C. It then (1) treats these

names as terms, (2) computes the tf-idf value for each term

considering C as a document, (3) ranks the terms based on the

computed values, and associates the set of the top-10 terms to

C as its label. The output of the technique is the set of labeled

clusters, where each cluster represents a feature in the trace.

III. CASE STUDY

To evaluate FEATUREFINDER, we conducted a case study

on five randomly selected open-source apps that belong to

different categories: K-9 MAIL [4], WORDPRESS [5], DAILY-

MONEY [6], PASSWORDMAKER [7], and MUSIC PLAYER [8].

We first instrumented the apps using FEATUREFINDER. Then,

for each app, we (1) created two usage scenarios that exercised

different features of the app and (2) obtained two traces by

realizing the scenarios while running the app. Table II shows

the resulting traces, which contain 60.6 user events on average.

We randomly selected to use K-9 MAIL’s traces for testing,

and the eight traces of the remaining apps for training. For

each of these eight traces, we used FEATUREFINDER to split

the trace into segments. One of the authors then manually iden-

tified clusters for each trace by determining which segments

corresponded to a feature and should have been clustered.

Based on the identified clusters, we then labeled each pair

of feature vectors for contiguous trace segments as either

“merge” or “don’t merge”, based on whether the segments

belonged to a manually identified cluster. Using this approach,

we generated a total of 490 labeled pairs of trace segments and

corresponding feature vectors. We used these pairs to train,

using 10-fold cross-validation, 10 commonly used classifiers

available in the Weka package [9], including classifiers based

on decision trees, logistic regression, SVM, and k-NNs. As

the results in Table III show, these classifiers can achieve high

accuracy (0.84 on average).

Based on these results, we implemented a prototype of

FEATUREFINDER using IBk(10), which has the highest ac-

curacy among the classifiers considered. We then used our

prototype on the two traces of K-9 MAIL, using the manually

identified clusters as ground truth. (To mitigate the risk of bias,

an additional author inspected and agreed on the manually

identified clusters.) Table IV shows the clusters we manually

identified (ground truth) and the labels that we created to

indicate the corresponding features. The table also shows the

clusters and labels computed by FEATUREFINDER. Due to

space limitations, we do not show the user events, which are

available elsewhere [10].

As shown in Table IV, FEATUREFINDER identified six

features for Trace 0 (TID=0), among which four match the

ground truth: (ft01, fh01), (ft02, fh02), (ft05, fh05), and (ft06,

fh06). (Note that some starting and ending segment ids do

not match exactly due to noise in the traces, such as a touch

event on the back button.) For feature fh04 (Adding account),
FEATUREFINDER identified two features: ft03 (which corre-

sponds to providing an email address and a password to login)

and ft04 (which corresponds to setting a name for the new

account). As for fh03 (Email setting), which involves adding

stars for two emails, FEATUREFINDER grouped it with the

login part of adding an account (ft03), most likely due to non-

significant changes with respect to the activities, fragments,

and method calls in the corresponding cluster.

For Trace 1 (TID=1), FEATUREFINDER identified three

features, among which two match the ground truth: (ft11,

fh11) and (ft13, fh15). (Also in this case, segment ids do

not match exactly in some cases, for the same reasons men-

tioned above.) Feature ft12 groups together three ground-truth

features: fh12, fh13, and fh14, which correspond to email

composing, email search, and invoking the “About” menu

entry. In this case, the recorded execution properties were not

enough for FEATUREFINDER to split the sequences correctly.

Overall the differences between sequences are not considered

as significant by the classifier due to the presence of activities

that are present in a significant number of segments (e.g.,

MessageList and SettingsActivity).

For the six features that FEATUREFINDER correctly identi-

fied, we believe that the labels computed by FEATUREFINDER

effectively capture the essence of the features. For three of the

features (ft02, ft06, and ft13) the labels contain words present

in the ground-truth labels (e.g., folder), and all the labels are

close in meaning to the ground-truth labels.

Overall, FEATUREFINDER correctly identified 55% of the

features in the traces considered (4/6 for Trace 0 and 2/5

for Trace 1). These features provide a high-level summary



TABLE I
FEATURES USED TO COMPARE TWO TRACE SEGMENTS.

ID Name Description
VF0 size 0, if both small; 1, if one small and one large; 2, if both large.�

VF1 clustering 0, if both are individual segments; 1, if one of the segments is a cluster.

VF2 activity usage Jaccard similarity of the activities in the two segments, treated as sets.

VF3 fragment usage Jaccard similarity of the fragments in the two segments, treated as sets.

VF4 widget usage Jaccard similarity of the widget information in the two segments, treated as sets.

VF5-VF12† package words Similarity of the words‡ contained in the package names occurring in the two segments.

VF13-VF20† class words Similarity of the words‡ contained in the class names occurring in the two segments.

VF21-VF28† method words Similarity of the words‡ contained in the method names occurring in the two segments.
� A segment is considered small if it contains less than three method calls, large otherwise.
† FEATUREFINDER computes the cosine similarity of eight pairs of vectors, where FEATUREFINDER generates the first (resp., second) vector in each pair based on the words
contained in the first (resp., second) segment, and eight combinations are obtained by (1) populating the vectors with either tf or tf-idf values for the words [2], while (2) treating
the words as either sets (i.e., without repetitions) or bags (i.e., with repetitions), and (3) considering either plain words or words augmented with their depth.
‡ To extract words, FEATUREFINDER (1) splits names into tokens (e.g., based on camel case), (2) performs stemming [3], (3) eliminates Java keywords, stop words, and tokens
whose length is less than 3 or greater than 32, and (4) makes the remaining tokens lower case.

TABLE II
TRACES USED FOR TRAINING AND FOR TESTING.

TID App Category #MethodCall #Segment #Vector‡
0 WORDPRESS Productivity 16,743 74 73

1 WORDPRESS Productivity 22,000 63 62

2 DAILY-MONEY Finance 12,080 92 91

3 DAILY-MONEY Finance 19,108 84 83

4 PASSWORDMAKER Tools 2,080 23 22

5 PASSWORDMAKER Tools 2,434 34 33

6 MUSIC PLAYER Media 32,365 57 56

7 MUSIC PLAYER Media 36,258 71 70

0 K-9 MAIL Communication 23,675 58 n/a

1 K-9 MAIL Communication 48,129 50 n/a
‡ Number of feature vectors used for the training of the classifier.

TABLE III
ACCURACY OF THE CLASSIFIERS CONSIDERED.

Weka Classifier Accuracy Classifier Description
J48 0.83 A decision tree classifier

PART 0.82 A decision list classifier

DecisionTable 0.84 A simple decision table majority classifier

Logistic 0.83 A multinomial logistic regression model

SMO 0.85 A support vector classifier

IBk(1) 0.83 A k-NN classifier (with k=1)

IBk(2) 0.86 A K-NN classifier (with k=2)

IBk(3) 0.83 A K-NN classifier (with k=3)

IBk(5) 0.83 A K-NN classifier (with k=5)

IBk(10) 0.86 A K-NN classifier (with k=10)

of the execution trace and can help the developer understand

the corresponding execution. FEATUREFINDER also reported

some incorrect features, however, which may mislead the

developer. To mitigate this issue, in the future, we plan

to provide better guidance to the developer by associating

confidence values to the identified features.

IV. RELATED WORK

Our technique is related to techniques that do trace analysis

for program understanding. These techniques use different ap-

proaches, such as trace reduction and compression [11], [12],

summarization [13], segmentation [14], pattern mining [15],

and visualization [16], [17]. In particular, FEATUREFINDER is

most closely related to techniques that do trace segmentation

to identify execution phases, such as those that consider simi-

larity among method calls [18], [19], deltas in call-stack depth

[14], method call frequency [20], object creation and deletion

[21], [22], and program structure [23]. FEATUREFINDER dif-

fers from these techniques in that it uses a classifier-based

algorithm in identifying and clustering related user events

for feature identification. Our technique is also related to,

albeit different from, techniques for feature location (e.g.,

TABLE IV
FEATURES IDENTIFIED FOR K-9 MAIL.

TID Tool/Human Features
IDs Labeled Clusters ([sid,eid]:label0,label1)‡

0

FEATURE

FINDER

ft01 [0,16]:MessageList,MessageListFragment
ft02 [17,25]:FolderSettings,FolderList
ft03 [26,35]:SettingsActivity,AccountSetupBasics
ft04 [36,39]:AccountSetupNames,AccountSetupCheckSettings
ft05 [40,44]:MessageViewFragment,MessageList
ft06 [45,49]:MessageCompose,MessageList

Ground
truth

fh01 [0,15]:Email checking
fh02 [16,26]:Managing folders
fh03 [27,30]:Email setting
fh04 [31,39]:Adding account
fh05 [40,43]:Email checking
fh06 [44,49]:Email composing

1

FEATURE

FINDER

ft11 [0,25]:MessageList,MessageListFragment
ft12 [26,42]:AboutActivity,MessageCompose
ft13 [43,57]:GeneralSettingsFragment,GeneralSettingsActivity

Ground
truth

fh11 [0,24]:Email checking
fh12 [25,30]:Email composing
fh13 [31,35]:Email search
fh14 [36,42]:Getting info
fh15 [43,57]:General settings

‡ Labeled clusters are shown in the form of [sid,eid]:label0,label1, where sid and eid are
the starting and ending ids of the segments, and label0 and label1 are the top-2 terms in
the labels (we only show the top-2 terms due to space limit).

[24]) and techniques that use dynamic analysis for program

understanding (e.g., [1]).

V. CONCLUSION & FUTURE WORK

We presented FEATUREFINDER, which aims to dynam-

ically identify features of Android apps. Given an app,

FEATUREFINDER first instruments it to generate traces that

capture different execution properties. It then splits the trace

into segments and uses a bottom-up approach to cluster

consecutive, related segments, where each cluster indicates a

feature. Finally, it labels each cluster to provide a human-

readable description of the corresponding feature. We also

presented a case study that shows the viability of our approach.
In addition to the future work we described earlier in the pa-

per, we plan to extend FEATUREFINDER so that it can identify

features hierarchically, at different levels of abstraction. We

will also define a visualization for presenting the identified

features to the users. Finally, we plan to extend our evaluation

by including more apps and conducting a user study.
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