
RAIN: Refinable Attack Investigation with

On-demand Inter-process Information

Flow Tracking

Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia

Fazzini, Taesoo Kim, Alessandro Orso, and Wenke Lee

ACM CCS 2017

Oct 31, 2017

More and more data breaches

2

658
558

819
924

1029
853

1155

815
918

513

1594

428

2459

316
427

665 721

1901

0

500

1000

1500

2000

2500

3000

2013-H1 2013-H2 2014-H1 2014-H2 2015-H1 2015-H2 2016-H1 2016-H2 2017-H1

DATA BREACHES

(SOURCE: BREACH LEVEL INDEX BY GEMALTO)

Number of data breaches Number of breached records (mil)

Is attack investigation accurate?

3

send

send
send
send

read

read

read

A

B

C

“Hmm,

I only want C!”

A, B, or C ?

Dependency confusion!

4

“Let me change
the offer price.”

recv

write

File archive

write

write

writeread

?

?

?

Is this file affected ?Dependency confusion!

Related work

Accuracy

Runtime

Efficiency

Analysis

Efficiency

• System-call-based

• DTrace, Protracer, LSM, Hi-Fi

• Dynamic Information Flow Tracking (DIFT)

• Panorama, Dtracker

• DIFT + Record replay

• Arnold

4

RAIN

Accuracy

Runtime

Efficiency

Analysis

Efficiency

• We use

• Record replay

• Graph-based pruning

• Selective DIFT

• We achieve
• High accuracy

• Runtime efficiency

• Highly improved analysis efficiency RAIN

5

Threat model

• Trusts the OS
• RAIN tracks user-level attacks.

• Tracks explicit channels
• Side or covert channel is out of scope.

• Records all attacks from their inception
• Hardware trojans or OS backdoor is out of scope.

7

8

Analysis host

Provenance

graph builder

Triggering,

reachability

analysis

Replay and

selective DIFT

RAIN

Kernel Module

Customized

libc

Target host

Logs

Coarse-level graph Pruned sub-graph Refined sub-graph

Prune Refine

Architecture

OS-level record replay

File

Socket

Randomness

External

inputs

1.Records external inputs

2.Captures the thread

switching from the

pthread interface, not the

produced internal data

3.Records system-wide

executions

IPC

Thread 1 Thread 2

Process group

Internal

data

Thread switching

(via Pthread) 9

Coarse-level logging and graph building

• Keeps logging system-call events

• Constructs a graph to represent:
• the processes, files, and sockets as nodes

• the events as causality edges

10

C

B

P1

A

Send

Read

Read

A: Attacker site

B: /docs/report.doc

C: /tmp/errors.zip

P1: /usr/bin/firefox

Pruning

• Does every recorded execution need replay and DIFT?

• Prunes the data in the graph based on trigger analysis results
• Upstream

• Downstream

• Point-to-point

• Interference

No!

11

F

P3

C

E

P2

B

P1

A

D

Send

Read

Read

Write

Write

Read

Read

Mmap

A: Attacker site

B: /docs/report.doc

C: /tmp/errors.zip

D: /docs/ctct1.csv

E: /docs/ctct2.pdf

F: /docs/loss.csv

P1: /usr/bin/firefox

P2: /usr/bin/TextEditor

P3: /bin/gzip

Upstream

12

P3

C

E
P2

B

P1

A

D

Read

Write

Write

Read

Write

ReadWrite

Read

A: Tampered file /docs/ctct.csv

B: Seasonal report docs/s1.csv

C: Seasonal report docs/s2.csv

D: Budget report docs/bgt.csv

E: Half-year report docs/h2.pdf

P1: Spreadsheet editor

P2: Auto-budget program

P3: Auto-report program

Downstream

13

Point-to-point

F
P3

C

E
P2

B

A

D

P1

P4

Read

Read

Read

Read

Read

Write

Write

Write

Write

Send

1

2

A: Tampered file /docs/ctct.csv

B: Seasonal report docs/s1.csv

C: Seasonal report docs/s2.csv

D: Budget report docs/bgt.csv

E: Half-year report docs/h2.pdf

F: Document archive server

P1: Spreadsheet editor

P2: Auto-budget program

P3: Auto-report program

P4: Firefox browser

14

Interference

• Insight: only inbound and outbound files that interfere in a
process will possibly produce causality.
• We determine interference according to the time order of inbound and

outbound IO events.

D

B
P2

Write

Read

t1

t2

t1<t2

C
F

P3

t1

t2

t3

E

Read

Mmap

Write

t1< t2< t3 15

Refinement - selective DIFT

• Replays and conducts DIFT to the necessary part of the
execution
• Aggregation

• Upstream

• Downstream

• Point-to-point

16

F

P3

C

E

P2

B

P1

A

D

Send

Read

Read

Write

Write

Read

Read

Mmap

Upstream refinement

17

Implementation summary

• RAIN is built on top of:
• Arnold, the record replay framework

• Dtracker (Libdft) and Dytan, the taint engines

Host Module LoC

Target host
Kernel module 2,200 C (Diff)

Trace logistics 1,100 C

Analysis host

Provenance graph 6,800 C++

Trigger/Pruning 1,100 Python

Selective refinement 900 Python

DIFT Pin tools 3,500 C/C++ (Diff)

18

Evaluations

• Runtime performance

• Accuracy

• Analysis cost

• Storage footprint

19

20

Runtime overhead: 3.22% SPEC CPU2006

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

b
zi

p
2

p
er

lb
en

ch

ca
lc

u
lix

g
am

es
s

b
w

av
es

sj
en

g

o
m

n
et

p
p

m
cf

as
ta

r

h
2
6
4r

ef

h
m

m
er

xa
la

n
cb

m
k

g
o

b
m

k

lib
q

u
an

tu
m

sp
h
in

x3

m
ilc

ze
u

sm
p

g
ro

m
ac

s

le
sl

ie
3
d

n
am

d

lb
m

d
ea

lII

so
p

le
x

p
o

vr
ay

G
em

sF
D

TD

to
n

to w
rf

g
cc

Logging Logging+Recording

Multi-thread runtime overhead: 5.35%
SPLASH-3

21

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

ocean-c ocean-n fmm radiosity water-n water-s barnes volrend

IO intensive application: less than 50%

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

kernel
copy

movie
download

libc
compilation

Firefox
session

Logging Logging+Recording

23

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Screengrab Cameragrab Audiograb NetRecon Motivating
Example

90.50%

32%
39.70%

84.70%

67.00%

0% 0% 0%

13%

0%

Dependency confusion rate

Coarse-level Fine-level

High analysis accuracy

Scenarios from red team exercise of DARPA Transparent Computing program

Pruning effectiveness: ~94.2% reduction

24

0

100

200

300

400

500

600

700

800

Screengrab Cameragrab Audiograb NetRecon Motive
Example

99 141

310

138

720

5 19 11 13 34

Taint workload: #processes

None RAIN

Storage cost: ~4GB per day (1.5TB per year)

25

4000

740

200.6

166.1

133.6

105

113.9

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Per day desktop

Libc compilation

Motive Example

NetRecon

Audiograb

Cameragrab

Screengrab

Storage overhead (MB)

Discussion

• Limitations
• RAIN trusts the OS that needs kernel integrity protection.

• Over-tainting issue

• Direction
• Hypervisor-based RAIN

• Further reduce storage overhead

26

Conclusion

• RAIN adopts a multi-level provenance system to facilitate fine-
grained analysis that enables accurate attack investigation.

• RAIN has low runtime overhead, as well as significantly
improved analysis cost.

27

