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More and more data breaches
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Is attack investigation accurate?
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Related work
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• System-call-based

• DTrace, Protracer, LSM, Hi-Fi

• Dynamic Information Flow Tracking (DIFT)

• Panorama, Dtracker

• DIFT + Record replay

• Arnold
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RAIN
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Analysis

Efficiency

• We use

• Record replay

• Graph-based pruning

• Selective DIFT

• We achieve
• High accuracy

• Runtime efficiency

• Highly improved analysis efficiency RAIN
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Threat model

• Trusts the OS
• RAIN tracks user-level attacks.

• Tracks explicit channels
• Side or covert channel is out of scope.

• Records all attacks from their inception
• Hardware trojans or OS backdoor is out of scope.
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OS-level record replay
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Coarse-level logging and graph building

• Keeps logging system-call events

• Constructs a graph to represent:
• the processes, files, and sockets as nodes

• the events as causality edges
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Pruning

• Does every recorded execution need replay and DIFT? 

• Prunes the data in the graph based on trigger analysis results
• Upstream

• Downstream

• Point-to-point 

• Interference

No!
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Point-to-point
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Interference

• Insight: only inbound and outbound files that interfere in a 
process will possibly produce causality.
• We determine interference according to the time order of inbound and 

outbound IO events.
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Refinement - selective DIFT

• Replays and conducts DIFT to the necessary part of the 
execution
• Aggregation

• Upstream

• Downstream

• Point-to-point
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Implementation summary

• RAIN is built on top of:
• Arnold, the record replay framework

• Dtracker (Libdft) and Dytan, the taint engines

Host Module LoC

Target host
Kernel module 2,200 C (Diff)

Trace logistics 1,100 C

Analysis host

Provenance graph 6,800 C++

Trigger/Pruning 1,100 Python

Selective refinement 900 Python

DIFT Pin tools 3,500 C/C++ (Diff)
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Evaluations

• Runtime performance

• Accuracy

• Analysis cost

• Storage footprint
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Runtime overhead: 3.22% SPEC CPU2006
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Multi-thread runtime overhead: 5.35% 
SPLASH-3

21

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

ocean-c ocean-n fmm radiosity water-n water-s barnes volrend



IO intensive application: less than 50%
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Pruning effectiveness: ~94.2% reduction
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Storage cost: ~4GB per day (1.5TB per year)
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Discussion

• Limitations
• RAIN trusts the OS that needs kernel integrity protection.

• Over-tainting issue

• Direction
• Hypervisor-based RAIN

• Further reduce storage overhead
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Conclusion

• RAIN adopts a multi-level provenance system to facilitate fine-
grained analysis that enables accurate attack investigation.

• RAIN has low runtime overhead, as well as significantly 
improved analysis cost.

27


