
Identifying Features of
Android Apps from
Execution Traces

Qi Xin, Farnaz Behrang, Mattia Fazzini, and Alessandro Orso

Understanding a Program & its Features

Functionality
Modification

Debloating Debugging

Testing Documentation

Refactoring

Understanding a Program & its Features

Identifying Features of
a program by Analyzing

its Executions

Program Understanding is HARD

Figure from Understanding Execution Traces Using Massive
Sequence and Circular Bundle Views by Cornelissen et al.

Program Understanding is HARD

Figure from Understanding Execution Traces Using Massive
Sequence and Circular Bundle Views by Cornelissen et al.

~50% mainten
ance

effor
t spe

nt on

progr
am unde

rstan
ding

alone
*

*Program understanding: Challenge for the 1990s by Corbi

Our Approach

• Identifies features by analyzing execution trace
• Targets Mobile (Android) apps
• In our context, a feature is a sequence of user events that exercise

some functionality of the app

Our Approach

• Identifies features by analyzing execution trace
• Targets Mobile (Android) apps
• In our context, a feature is a sequence of user events that exercise

some functionality of the app

Login Feature of WordPress

1 2

3

Login Feature of WordPress

4

5 6

Login Feature of WordPress

7

High-level Approach

Trace

High-level Approach

Trace

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

High-level Approach

Trace

Feature0 Feature1 Feature2 Feature3

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

FeatureFinder

FeatureFinder

Instrumentation

Instrumented
AppApp

Step 1

Capture execution information
• Stacks of Method Calls
• Activities & Fragments
• User Events

• Touch event & widgets
• Keyboard event & labels

FeatureFinder

Execution

Instrumented
App

Trace File

User

Step 2

User executes the app
to exercise its features

FeatureFinder

Trace File

Splitting

Segments

Step 3

Split the trace into
segments by user events

FeatureFinder

Segments

Clustering

Clusters

Step 4

Group “related” segments
• Compare execution info
• Use a classifier to

decide “relatedness”

Clustering algorithm

S0 S1 S2 S3 S4

Clustering algorithm

S0 S1 S2 S3 S4

Clustering algorithm

S0 S1 S2 S3 S4

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S0_S1

A numeric vector encoded as the
comparison b/w S0 and S1

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S0_S1

A trained classifier

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S0_S1 Merge

Clustering algorithm

S0 S1 S2 S3 S4

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S0_S1

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S0_S1 Merge

Clustering algorithm

S0 S1 S2 S3 S4

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S0_S1_S2 Don’t Merge

Clustering algorithm

S0 S1 S2 S3 S4

Clustering algorithm

S0 S1 S2 S3 S4

Vector_S3_S4

Merge

Clustering algorithm

S0 S1 S2 S3 S4

FeatureFinder
Labeling

Clusters Labeled Clusters
(Features)

Step 5

Label each cluster
• Use activity & fragment names
• Rank names by TF-IDF values
• Select the top-10

Case Study

• Conducted a study using 5 apps
• Exercised different app features and generated traces
• Used 4 apps for classifier training
• Evaluated FeatureFinder on the other app K-9 Mail

WordPress
DailyMoney
PasswordMaker
Music Player
K-9 Mail

Two Trace for
each App

Classifier Training

• Used FeatureFinder to split trace into segments
• Manually Identified clusters
• Generated 490 segments pairs labeled as “Merge” & “Don’t merge”
• Trained 10 classifiers
• Used the best: k-NN (k=10)

Features for Trace 0

ft01 ft02 ft03

ft04 ft05 ft06

fh01 fh02

fh03

fh04

fh05 fh06

FeatureFinder

Human

Features for Trace 0

ft01 ft02 ft03

ft04 ft05 ft06

fh01 fh02

fh03

fh04

fh05 fh06

FeatureFinder

Human

MessageList
MessageListFragment

Email Checking

FolderSettings
FolderList

Managing Folders

MessageViewFragment
MessageList

Email Checking

MessageCompose
MessageList

Email Composing

Evaluation Results

• Manually identified 11 feature clusters (ground truth)
• FeatureFinder generated 9 clusters
• Identified 6 of the 11 (55%) features
• Labels generated are in close meaning to the human labels

Conclusion & Future work

• FeatureFinder identifies features from app’s execution traces
• Case study results, albeit preliminary, are promising
• As future work
• Perform a user study
• Extend FeatureFinder to identify features hierarchically
• Define a visualization for showing the features

